根据定义判断函数极值(B005)

问题

已知,函数 $f(x)$ 在点 $x_{0}$ 的某个领域 $U(x_{0})$ 内有定义,$x$ 表示点 $x_{0}$ 的去心邻域 $\mathring{U_{x_{0}}}$ 内的任意一点.
那么,根据【函数极值的定义】,下面哪些选项是正确的?

选项

[A].   $f(x)$ $\leqslant$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极大值

[B].   $f(x)$ $>$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极小值

[C].   $f(x)$ $\geqslant$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极小值

[D].   $f(x)$ $<$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极大值.

[E].   $f(x)$ $<$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极小值

[F].   $f(x)$ $>$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极大值


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$f(x)$ $<$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极大值.
$f(x)$ $>$ $f(x_{0})$ $\color{Red}{\Rightarrow}$ $f(x_{0})$ 是一个极小值.

函数的极值就是最大值吗?(B005)

问题

以下关于【函数极值】的说法中,正确的是哪个?

选项

[A].   函数的极值就是极大值

[B].   函数的极值包括极大值和极小值

[C].   函数的极值就是极小值

[D].   函数的极值就是最大值


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

函数的极值包括“极大值”和“极小值”.

关于函数极值的更多内容,可以参考荒原之梦网的这篇文章:《什么是极值点和最值点?

$\cot x$ 的麦克劳林公式(B004)

问题

$\cot x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:

  1. 下面所有选项中 $x$ 的取值范围都是:$(0, \pi)$
  2. 式子中的 $B_{2n}$ 表示“伯努利数”,关于伯努利数的详情可以参考荒原之梦网的这篇文章:《常见的伯努利数汇总》.

    选项

    [A].   $\frac{1}{x}$ $-$ $\frac{1}{3}$ $\cdot$ $x$ $-$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $-$ $\cdots$ $+$ $\frac{(-1)^{n} 2^{2n} B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [B].   $\frac{1}{x}$ $+$ $\frac{1}{3}$ $\cdot$ $x$ $+$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n} 2^{2n-1} B_{2n}}{(2n-1)!}$ $\cdot$ $x^{2n-1}$

    [C].   $\frac{1}{x}$ $-$ $\frac{1}{3}$ $\cdot$ $x$ $-$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n} 2^{2n+1} B_{n}}{(2n+1)!}$ $\cdot$ $x^{2n-1}$

    [D].   $\frac{1}{x}$ $+$ $\frac{1}{3}$ $\cdot$ $x$ $+$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $-$ $\cdots$ $+$ $\frac{(-1)^{n} 2^{2n} B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$


    上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

    $\cot x$ 的麦克劳林公式

    完整版:

    $\cot x$ $=$ $\frac{1}{x}$ $-$ $\frac{1}{3}$ $\cdot$ $x$ $-$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $-$ $\cdots$ $+$ $\frac{(-1)^{n} 2^{2n} B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    求和版:

    $\cot x$ $=$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^{n} 2^{2n} B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    简略版:

    $\cot x$ $=$ $\frac{1}{x}$ $-$ $\frac{1}{3}$ $\cdot$ $x$ $-$ $\frac{1}{45}$ $\cdot$ $x^{3}$ $.$

辅助图像:
cot x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\cot x$ 的图像,蓝色曲线表示 $\cot x$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\csc x$ 的麦克劳林公式(B004)

问题

$\csc x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:

  1. 下面所有选项中 $x$ 的取值范围都是:$(0, \pi)$
  2. 式子中的 $B_{2n}$ 表示“伯努利数”,关于伯努利数的详情可以参考荒原之梦网的这篇文章:《常见的伯努利数汇总》.

    选项

    [A].   $\frac{1}{x}$ $+$ $\frac{1}{6}$ $\cdot$ $x$ $+$ $\frac{7}{360}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}2(2^{2n-1}+1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n+1}$

    [B].   $\frac{1}{x}$ $+$ $\frac{1}{3}$ $\cdot$ $x$ $+$ $\frac{7}{306}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}2(2^{2n-1}-1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [C].   $\frac{1}{x}$ $+$ $\frac{1}{6}$ $\cdot$ $x$ $+$ $\frac{7}{360}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}2(2^{2n-1}-1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [D].   $\frac{1}{x}$ $+$ $\frac{1}{6}$ $\cdot$ $x$ $+$ $\frac{7}{360}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}2(2^{2n}-1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n}$


    上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

    $\csc x$ 的麦克劳林公式

    完整版:

    $\csc x$ $=$ $\frac{1}{x}$ $+$ $\frac{1}{6}$ $\cdot$ $x$ $+$ $\frac{7}{360}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}2(2^{2n-1}-1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    求和版:

    $\csc x$ $=$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^{n+1}2(2^{2n-1}-1)B_{2n}}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    简略版:

    $\csc x$ $=$ $\frac{1}{x}$ $+$ $\frac{1}{6}$ $\cdot$ $x$ $+$ $\frac{7}{360}$ $\cdot$ $x^{3}$ $.$

辅助图像:
csc x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\csc x$ 的图像,蓝色曲线表示 $\csc x$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\sec x$ 的麦克劳林公式(B004)

问题

$\sec x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:

  1. 下面所有选项中 $x$ 的取值范围都是:$(\frac{- \pi}{2}, \frac{\pi}{2})$
  2. 式子中的 $E_{2n}$ 表示“欧拉数”,关于欧拉数的详情可以查看荒原之梦网的这篇文章:《常见的欧拉数取值

    选项

    [A].   $1$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $+$ $\frac{61}{720}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}E_{2n}}{(2n-1)!}$ $\cdot$ $x^{2n-1}$

    [B].   $x$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $+$ $\frac{61}{720}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}E_{2n}}{(2n)!}$ $\cdot$ $x^{2n}$

    [C].   $1$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $+$ $\frac{61}{720}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}E_{2n}}{(2n)!}$ $\cdot$ $x^{2n}$

    [D].   $1$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $+$ $\frac{61}{720}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n+1}}{(2n)!}$ $\cdot$ $x^{2n}$


    上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

    $\sec x$ 的麦克劳林公式

    完整版:

    $\sec x$ $=$ $1$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $+$ $\frac{61}{720}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}E_{2n}}{(2n)!}$ $\cdot$ $x^{2n}$ $.$

    求和版:

    $\sec x$ $=$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^{n}E_{2n}}{(2n)!}$ $\cdot$ $x^{2n}$ $.$

    简略版:

    $\sec x$ $=$ $1$ $+$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $+$ $\frac{5}{24}$ $\cdot$ $x^{4}$ $.$

辅助图像:
sec x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\sec x$ 的图像,蓝色曲线表示 $\sec x$ 对应的麦克劳林公式前三项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\arcsin x$ 的麦克劳林公式(B004)

问题

$\arcsin x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$(-1, 1)$

选项

[A].   $x$ $+$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{40}$ $\cdot$ $x^{6}$ $+$ $\cdots$ $+$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n-1)}$ $\cdot$ $x^{2n-1}$

[B].   $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{10}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n+1)}$ $\cdot$ $x^{2n+1}$

[C].   $1$ $+$ $x$ $+$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{40}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n)}$ $\cdot$ $x^{2n}$

[D].   $x$ $+$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{40}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n+1)}$ $\cdot$ $x^{2n+1}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\arcsin x$ 的麦克劳林公式

完整版:

$\arcsin x$ $=$ $x$ $+$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{40}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n+1)}$ $\cdot$ $x^{2n+1}$ $.$

求和版:

$\arcsin x$ $=$ $\sum_{n=0}^{\infty}$ $\frac{(2n)!}{4^{n}(n!)^{2}(2n+1)}$ $.$

简略版:

$\arcsin x$ $=$ $x$ $+$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $+$ $\frac{3}{40}$ $\cdot$ $x^{5}$ $.$

与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,

$\arcsin x$ $\sim$ $x$ $.$

$\arcsin x$ $\sim$ $x$ $+$ $\frac{1}{6}$ $\color{Red}{\Rightarrow}$ $\arcsin x$ $-$ $x$ $\sim$ $\frac{1}{6}$ $\cdot$ $x^{3}$ $.$

辅助图像:
arcsin x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\arcsin x$ 的图像,蓝色曲线表示 $\arcsin x$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\arctan x$ 的麦克劳林公式(B004)

问题

$\arctan x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$[-1, 1]$

选项

[A].   $x$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}}{2n-1}$ $\cdot$ $x^{2n-1}$

[B].   $1$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}}{2n+1}$ $\cdot$ $x^{2n+1}$

[C].   $x$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}}{2n+1}$ $\cdot$ $x^{2n+1}$

[D].   $1$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $-$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}}{2n}$ $\cdot$ $x^{2n}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\arctan x$ 的麦克劳林公式

完整版:

$\arctan x$ $=$ $x$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-1)^{n}}{2n+1}$ $\cdot$ $x^{2n+1}$ $.$

求和版:

$\arctan x$ $=$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^{n}}{2n+1}$ $\cdot$ $x^{2n+1}$ $.$

简略版:

$\arctan x$ $=$ $x$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{5}$ $\cdot$ $x^{5}$ $.$

与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,$\arctan x$ $\sim$ $x$ $-$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $\color{Red}{\Rightarrow}$ $x$ $-$ $\arctan x$ $\sim$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $.$

辅助图像:
arctan x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\arctan x$ 的图像,蓝色曲线表示 $\arctan x$ 对应的麦克劳林公式前三项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\frac{1}{1+x}$ 的麦克劳林公式(B004)

问题

$\frac{1}{1+x}$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$(-1, 1)$

选项

[A].   $1$ $-$ $x$ $+$ $x^{2}$ $-$ $x^{3}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $x^{n+1}$

[B].   $x$ $+$ $x^{2}$ $-$ $x^{3}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $x^{n}$

[C].   $1$ $-$ $x$ $+$ $x^{2}$ $-$ $x^{3}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $x^{n}$

[D].   $x$ $-$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $x^{n-1}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{1}{1+x}$ 的麦克劳林公式

完整版:

$\frac{1}{1+x}$ $=$ $1$ $-$ $x$ $+$ $x^{2}$ $-$ $x^{3}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $x^{n}$ $.$

求和版:

$\frac{1}{1+x}$ $=$ $\sum_{n=0}^{\infty}$ $(-1)^{n}$ $\cdot$ $x^{n}$ $.$

简略版:

$\frac{1}{1+x}$ $=$ $1$ $-$ $x$ $+$ $x^{2}$ $-$ $x^{3}$ $.$

$\frac{1}{1+x}$ 的麦克劳林公式其实就是当 $a$ $=$ $-1$ 时,$(1+x)^{a}$ 的麦克劳林公式.

辅助图像:
1/(1+x) 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\frac{1}{1+x}$ 的图像,蓝色曲线表示 $\frac{1}{1+x}$ 对应的麦克劳林公式前三项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\frac{1}{1-x}$ 的麦克劳林公式(B004)

问题

$\frac{1}{1-x}$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$(-1, 1)$

选项

[A].   $1$ $+$ $x$ $+$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $x^{n+1}$

[B].   $x$ $+$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $x^{n}$

[C].   $1$ $+$ $x$ $+$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $x^{n}$

[D].   $x$ $+$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $x^{n-1}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{1}{1-x}$ 的麦克劳林公式

完整版:

$\frac{1}{1-x}$ $=$ $1$ $+$ $x$ $+$ $x^{2}$ $+$ $x^{3}$ $+$ $\cdots$ $+$ $x^{n}$ $.$

求和版:

$\frac{1}{1-x}$ $=$ $\sum_{n=0}^{\infty}$ $x^{n}$ $.$

简略版:

$\frac{1}{1-x}$ $=$ $1$ $+$ $x$ $+$ $x^{2}$ $+$ $x^{3}$ $.$

$\frac{1}{1-x}$ 的麦克劳林公式其实就是当 $a$ $=$ $-1$ 时,$(1+x)^{a}$ 的麦克劳林公式.

辅助图像:
1/(1-x) 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\frac{1}{1-x}$ 的图像,蓝色曲线表示 $\frac{1}{1-x}$ 对应的麦克劳林公式前三项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\tan x$ 的麦克劳林公式(B004)

问题

$\tan x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:

  1. 下面所有选项中 $x$ 的取值范围都是:$(-1, 1)$
  2. 本题中的 $B_{2n}$ 表示伯努利数,有关伯努利数的详情可以查看荒原之梦网的这篇文章:常见的伯努利数汇总.

    选项

    [A].   $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{2}{15}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [B].   $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{1}{15}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [C].   $1$ $+$ $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{2}{15}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n-1}$

    [D].   $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{2}{15}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n+1}$


    上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

    $\tan x$ 的麦克劳林公式

    完整版:

    $\tan x$ $=$ $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{2}{15}$ $\cdot$ $x^{5}$ $+$ $\cdots$ $+$ $\frac{B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    求和版:

    $\tan x$ $=$ $\sum_{n=1}^{\infty}$ $\frac{B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}$ $\cdot$ $x^{2n-1}$ $.$

    简略版:

    $\tan x$ $=$ $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $+$ $\frac{2}{15}$ $\cdot$ $x^{5}$ $.$

    与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,$\tan x$ $\sim$ $x$ $+$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $\color{Red}{\Rightarrow}$ $\tan x$ $-$ $x$ $\sim$ $\frac{1}{3}$ $\cdot$ $x^{3}$ $,$ $\tan x$ $\sim$ $x$ $.$

辅助图像:
tan x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\tan x$ 的图像,蓝色曲线表示 $\tan x$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$(1+x)^{a}$ 的麦克劳林公式(B004)

问题

$(1+x)^{a}$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$(-\infty, +\infty)$

选项

[A].   $1$ $+$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{a(a-1) \cdots (a-n+1)}{(n+1)!}$ $\cdot$ $x^{n+1}$ $+$ $\omicron (x^{n})$ $.$

[B].   $x$ $+$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{a(a-1) \cdots (a-n+1)}{n!}$ $\cdot$ $x^{n}$ $+$ $\omicron (x^{n})$ $.$

[C].   $1$ $+$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{a(a-1) \cdots (a-n+1)}{n!}$ $\cdot$ $x^{n}$ $+$ $\omicron (x^{n})$ $.$

[D].   $1$ $-$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{a(a-1) \cdots (a-n+1)}{n!}$ $\cdot$ $x^{n}$ $+$ $\omicron (x^{n})$ $.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(1+x)^{a}$ 的麦克劳林公式

完整版:

$(1+x)^{a}$ $=$ $1$ $+$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $\cdot$ $x^{3}$ $+$ $\cdots$ $+$ $\frac{a(a-1) \cdots (a-n+1)}{n!}$ $\cdot$ $x^{n}$ $+$ $\omicron (x^{n})$ $.$

求和版:

$(1+x)^{a}$ $=$ $1$ $+$ $\sum_{n=1}^{\infty}$ $\frac{a(a-1) \cdots (a-n+1)}{n!}$ $\cdot$ $x^{n}$ $+$ $\omicron (x^{n})$ $.$

简略版:

$(1+x)^{a}$ $=$ $1$ $+$ $ax$ $+$ $\frac{a(a-1)}{2!}$ $\cdot$ $x^{2}$ $+$ $\frac{a(a-1)(a-2)}{3!}$ $+$ $\omicron (x^{n})$ $.$

与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,$(1+x)^{a}$ $\sim$ $1$ $+$ $ax$ $\color{Red}{\Rightarrow}$ $(1+x)^{a}$ $-$ $1$ $\sim$ $ax$$.$

辅助图像:
(1+x)^{a} 的麦克劳林公式 | 荒原之梦
图 01. 当 $a$ $=$ $2$ 时,红色曲线表示 $(1+x)^{a}$ 的图像,蓝色曲线表示 $(1+x)^{a}$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\ln(1+x)$ 的麦克劳林公式(B004)

问题

$\ln(1+x)$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?
说明:下面所有选项中 $x$ 的取值范围都是:$(-1, 1]$ $.$

选项

[A].   $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $-$ $\cdots$ $+$ $(-1)^{n-1}$ $\cdot$ $\frac{x^{n}}{n}$ $+$ $\omicron (x^{n})$

[B].   $x$ $+$ $\frac{x^{2}}{2}$ $-$ $\frac{x^{3}}{3}$ $+$ $\cdots$ $-$ $(-1)^{n-1}$ $\cdot$ $\frac{x^{n}}{n}$ $+$ $\omicron (x^{n})$

[C].   $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $-$ $\cdots$ $+$ $(-1)^{n-1}$ $\cdot$ $\frac{x^{n-1}}{n-1}$ $+$ $\omicron (x^{n})$

[D].   $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $-$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{n}}{n}$ $+$ $\omicron (x^{n})$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\ln(1+x)$ 的麦克劳林公式

完整版:

$\ln(1+x)$ $=$ $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $-$ $\cdots$ $+$ $(-1)^{n-1}$ $\cdot$ $\frac{x^{n}}{n}$ $+$ $\omicron (x^{n})$ $,$ 从 $n$ $=$ $1$ 开始 $.$

或者:

$\ln(1+x)$ $=$ $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $-$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{n+1}}{n+1}$ $+$ $\omicron (x^{n})$ $,$ 从 $n$ $=$ $0$ 开始 $.$

求和版:

$\ln(1+x)$ $=$ $\sum_{n=1}^{\infty}$ $(-1)^{n-1}$ $\cdot$ $\frac{x^{n}}{n}$ $+$ $\omicron (x^{n})$ $.$

或者:

$\ln(1+x)$ $=$ $\sum_{n=0}^{\infty}$ $(-1)^{n}$ $\cdot$ $\frac{x^{n+1}}{n+1}$ $+$ $\omicron (x^{n})$ $.$

简略版:

$\ln(1+x)$ $=$ $x$ $-$ $\frac{x^{2}}{2}$ $+$ $\frac{x^{3}}{3}$ $+$ $\omicron (x^{n})$ $.$

与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,$\ln(1+x)$ $\sim$ $x$ $.$

辅助图像:
ln(1+x) 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\ln(1+x)$ 的图像,蓝色曲线表示 $\ln(1+x)$ 对应的麦克劳林公式前三项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

$\cos x$ 的麦克劳林公式(B004)

问题

$\cos x$ 在 $x_{0}$ $=$ $0$ 处的【麦克劳林公式】是什么?

说明:下面所有选项中 $x$ 的取值范围都是:$(-\infty, +\infty)$

选项

[A].   $1$ $+$ $\frac{x^{2}}{2!}$ $+$ $\cdots$ $+$ $(-1)^{2n}$ $\cdot$ $\frac{x^{2n}}{(2n)!}$ $+$ $\omicron (x^{2n+1})$

[B].   $1$ $-$ $\frac{x^{2}}{2!}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{2n+1}}{(2n+1)!}$ $+$ $\omicron (x^{2n+1})$

[C].   $x$ $-$ $\frac{x^{2}}{2!}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{2n}}{(2n)!}$ $+$ $\omicron (x^{2n+1})$

[D].   $1$ $-$ $\frac{x^{2}}{2!}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{2n}}{(2n)!}$ $+$ $\omicron (x^{2n+1})$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\cos x$ 的麦克劳林公式

完整版:

$\cos x$ $=$ $1$ $-$ $\frac{x^{2}}{2!}$ $+$ $\frac{x^{4}}{4!}$ $-$ $\frac{x^{6}}{6!}$ $+$ $\cdots$ $+$ $(-1)^{n}$ $\cdot$ $\frac{x^{2n}}{(2n)!}$ $+$ $\omicron (x^{2n+1})$ $.$

求和版:

$\cos x$ $=$ $\sum_{n=0}^{\infty}$ $(-1)^{n}$ $\cdot$ $\frac{x^{2n}}{(2n)!}$ $+$ $\omicron (x^{2n+1})$ $.$

简略版:

$\cos x$ $=$ $1$ $-$ $\frac{x^{2}}{2!}$ $+$ $\frac{x^{4}}{4!}$ $-$ $\frac{x^{6}}{6!}$ $+$ $\omicron (x^{2n+1})$ $.$

与等价无穷小的关系:当 $x$ $\rightarrow$ $0$ 时,$\cos x$ $\sim$ $1$ $-$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $\color{Red}{\Rightarrow}$ $1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}$ $\cdot$ $x^{2}$ $.$

辅助图像:
cos x 的麦克劳林公式 | 荒原之梦
图 01. 红色曲线表示 $\cos x$ 的图像,蓝色曲线表示 $\cos x$ 对应的麦克劳林公式前两项的图像,可以看到,二者在 $x$ $=$ $0$ 附近几乎完全重合.

常用的麦克劳林公式:

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress