一、前言 
$$
\textcolor{orangered}{
\cos (\arcsin x) = ?
}
$$
$$
\textcolor{springgreen}{
\sin (\arccos x)= ?
}
$$
$$
\textcolor{orangered}{
\cos (\arcsin x) = ?
}
$$
$$
\textcolor{springgreen}{
\sin (\arccos x)= ?
}
$$
你是否被下面两个式子的困惑过:
$$
\sin (\arctan x) = ?
$$
$$
\cos (\arctan x) = ?
$$
现在,只需要看懂一张图,马上就明白了!
继续阅读“sin(arctan x) 和 cos(arctan x) 怎么算?一张图让你秒懂!”在《求解反函数的导数,你真的会吗?(首先需要知道什么是反函数)》这篇文章中,我们掌握了什么是反函数,以及反函数求导的方法。
那么,反函数都有着怎样的性质呢?在这篇文章中,就让我们一探究竟。
继续阅读“反函数的性质汇总”我们知道,函数的导数等于其对应的反函数导数的倒数,即:
$$
\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{\frac{\mathrm{d} x}{\mathrm{d} y}}
$$
但是,你真的会利用上面的性质计算反函数的导数吗?
难度评级:
相关文章:《反函数的性质汇总》
继续阅读“求解反函数的导数,你真的会吗?(首先需要知道什么是反函数)”我们知道,下面这两个不等式很常用也很重要(已知 $a \geqslant 0$, $b \geqslant 0$):
$$
a^{2} + b^{2} \geqslant 2ab
$$
$$
a + b \geqslant 2 \sqrt{ab}
$$
那么,你知道这两个不等式背后隐藏的几何规律吗?你是怎么记住这两个不等式的?其实,只要搞明白这背后的几何原理,想记不住它们都难哦!
继续阅读“明白了这两张图你就记住了这两个重要的常用不等式”Tips:
本文中的理解方法由荒原之梦(zhaokaifeng.com)原创。
变上限积分是定积分的一种,但又不是一般的定积分,我们有些时候甚至会用变上限积分直接替代不定积分使用——那么,变上限积分和不定积分到底有什么关系呢?
继续阅读“不定积分和变上限积分的联系与区别”通过《等价无穷小公式合辑》这篇文章可知,当 $x \rightarrow 0$ 时,我们有很多等价无穷小公式可以选择。
但是,当 $x \rightarrow 1$ 时,我们也可以通过“变形”的方式使用等价无穷小公式。
继续阅读“只有当 x 趋于零的时候才能用等价无穷小代换吗?不,x 趋于 1 的时候也可以试试看”在考研数学中,有些题目可以使用配方法对原式进行恒等变形,从而挖掘出解题的隐含条件——用好配方法,可以大大加快解题速度。
在本文中,荒原之梦网(zhaokaifeng.com)将用简单有效的表述阐述清楚什么是配方法,以及如何使用配方法。
难度评级:
继续阅读“挖掘题目隐含条件的利器:配方法”我们知道,当 $f(-x) = f(x)$ 时,该函数是偶函数,当 $f(-x) = -f(x)$ 时,该函数是奇函数。
但是,对于一些复杂的函数,直接使用上面的公式判断会过于复杂——如果理解并掌握了本文中提到的口诀,在很多时候可以帮助我们快速判断一些函数的奇偶性。
继续阅读“快速判断函数奇偶性的口诀”本文用于判断奇偶性,如果想判断函数的周期性,可以参考《如何判断一个函数是否是周期函数以及其周期是多少》一文。
如果要比较两个有限量 $a$ 和 $b$ 的大小,我们直接用减法,判断 $a – b$ 的结果是大于零还是小于零即可。
但是,如果要比较两个无穷大量的大小,还能用减法吗?
下面就以无穷大量 $\lim_{n \rightarrow \infty} x^{n}$ 和 $\lim_{n \rightarrow \infty} (\frac{x^{2}}{2})^{n}$ 的比较为例进行说明。
继续阅读“比较两个无穷大(或无穷小)量的大小,需要用除法而不是减法”