伴随矩阵的特征值与原矩阵的特征值之间有什么关系?

一、题目题目 - 荒原之梦

难度评级:

继续阅读“伴随矩阵的特征值与原矩阵的特征值之间有什么关系?”

单位矩阵很可能“引”出来互逆矩阵

一、题目题目 - 荒原之梦

难度评级:

继续阅读“单位矩阵很可能“引”出来互逆矩阵”

矩阵乘法中的矩阵不满足消去律和交换律,但矩阵对应的行列式满足消去律和交换律

一、题目题目 - 荒原之梦

难度评级:

继续阅读“矩阵乘法中的矩阵不满足消去律和交换律,但矩阵对应的行列式满足消去律和交换律”

用行列式表示的方程该怎么求根?

一、题目题目 - 荒原之梦

难度评级:

继续阅读“用行列式表示的方程该怎么求根?”

高阶行列式的计算思路:降阶或者找规律

一、题目题目 - 荒原之梦

难度评级:

继续阅读“高阶行列式的计算思路:降阶或者找规律”

矩阵的加减运算:只有同型矩阵才可以做加减运算,所得的也是同型矩阵

一、前言 前言 - 荒原之梦

通过本文中,我们将解决下面的问题:

  1. 什么样的矩阵可以做加减运算?
  2. 实际矩阵的加减运算怎么做?
  3. 抽象矩阵的加减运算有哪些定理?
继续阅读“矩阵的加减运算:只有同型矩阵才可以做加减运算,所得的也是同型矩阵”

当特征值等于零的时候,求解特征值和特征向量的式子其实就是一个齐次线性方程组

一、题目题目 - 荒原之梦

难度评级:

graph TD
    A[原式] --> |变形| B[特征值] --> |公式| C[特征向量];
    D[秩为 1] --> E[只有一个非零特征值] --> F[0 为二重特征值] --> |实对称矩阵| G[特征值对应的特征向量正交];
    C --> G;
    G --> H[求解特征值] --> |变形| I[验证选项]
继续阅读“当特征值等于零的时候,求解特征值和特征向量的式子其实就是一个齐次线性方程组”

2024年考研数二第22题解析:线性方程组、正交变换

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2024年考研数二第22题解析:线性方程组、正交变换”

2024年考研数二第16题解析:矩阵的化简

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2024年考研数二第16题解析:矩阵的化简”

2024年考研数二第10题解析:相似对角化、矩阵的特征值与特征向量

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2024年考研数二第10题解析:相似对角化、矩阵的特征值与特征向量”

考研线性代数思维导图:08-矩阵的运算 [XD-20250201]

涉及的知识点

01. 矩阵的加法运算
02. 矩阵的数乘运算
03. 矩阵的乘法运算

04. 矩阵的转置运算
05. 方阵的幂

继续阅读“考研线性代数思维导图:08-矩阵的运算 [XD-20250201]”

考研线性代数思维导图:07-特殊的矩阵 [XD-20250201]

涉及的知识点

01. 矩阵的表示方法
02. 方阵
03. 行向量
04. 列向量
05. 零矩阵
06. 单位矩阵

07. 数量矩阵
08. 对角矩阵
09. 上三角矩阵
10. 下三角矩阵
11. 对称矩阵
12. 反对称矩阵

继续阅读“考研线性代数思维导图:07-特殊的矩阵 [XD-20250201]”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress