行列式的可拆分性(C001)

问题

如果,行列式中某一行或者某一列的元素可以写成两数之和的形式,如:

$\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$.

则,根据行列式的性质,可以对上面的行列式做什么样的转换?

选项

[A].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $\times$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[B].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $-$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[C].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[D].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \frac{1}{a_{11}} & a_{12} & a_{13} \\ \frac{1}{a_{21}} & a_{22} & a_{23} \\ \frac{1}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} \frac{1}{b_{11}} & a_{12} & a_{13} \\ \frac{1}{b_{21}} & a_{22} & a_{23} \\ \frac{1}{b_{31}} & a_{32} & a_{33}\end{array}\right|$


显示答案

$\left|\begin{array}{lll} \textcolor{Red}{a_{11}} \textcolor{yellow}{+} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} \textcolor{yellow}{+} \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} \textcolor{yellow}{+} \textcolor{cyan}{b_{31}} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \textcolor{Red}{a_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $\textcolor{yellow}{+}$ $\left|\begin{array}{lll} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{cyan}{b_{31}} & a_{32} & a_{33}\end{array}\right|$

常数公因子 $k$ 在行列式中的处理方式(C001)

问题

若行列式的某行或列有公因子 $k$, 则以下对该公因子的处理方式中,正确的是哪个?

选项

[A].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[B].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $-k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[C].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k^{n}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[D].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\frac{1}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$


显示答案

$\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ \textcolor{red}{k} a_{i 1} & \textcolor{red}{k} a_{i 2} & \cdots & \textcolor{red}{k} a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\textcolor{red}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

一阶常系数非齐次线性差分方程的特解:$f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$ 且 $a$ $+$ $d$ $=$ $0$(B032)

问题

已知,有一阶常系数非齐次线性差分方程:
$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$.

其中,非齐次项 $f(t)$ $=$ $f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$, 其中,$d$ 为非零常数,$P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$

且:$a$ $+$ $d$ $\neq$ $0$.

则,试取特解的形式 $y_{t}^{*}$ $=$ $?$

选项

[A].   $y_{t}^{*}$ $=$ $t$ $\cdot$ $Q_{m}(t)$

[B].   $y_{t}^{*}$ $=$ $\frac{1}{t}$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$

[C].   $y_{t}^{*}$ $=$ $d^{t}$ $\cdot$ $Q_{m}(t)$

[D].   $y_{t}^{*}$ $=$ $t$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$


显示答案

$y_{t}^{*}$ $=$ $t$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$

其中,$Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$, 其中 $B_{0}$, $B_{1}$, $\cdots$, $B_{m}$ 为待定常数.

一阶常系数非齐次线性差分方程的特解:$f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$ 且 $a$ $+$ $d$ $\neq$ $0$(B032)

问题

已知,有一阶常系数非齐次线性差分方程:
$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$.

其中,非齐次项 $f(t)$ $=$ $f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$, 其中,$d$ 为非零常数,$P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$

且:$a$ $+$ $d$ $\neq$ $0$.

则,试取特解的形式 $y_{t}^{*}$ $=$ $?$

选项

[A].   $y_{t}^{*}$ $=$ $\frac{1}{t}$ $\cdot$ $Q_{m}(t)$

[B].   $y_{t}^{*}$ $=$ $t$ $\cdot$ $Q_{m}(t)$

[C].   $y_{t}^{*}$ $=$ $d^{t}$ $\cdot$ $Q_{m}(t)$

[D].   $y_{t}^{*}$ $=$ $Q_{m}(t)$


显示答案

$y_{t}^{*}$ $=$ $d^{t}$ $\cdot$ $Q_{m}(t)$

其中,$Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$, 其中 $B_{0}$, $B_{1}$, $\cdots$, $B_{m}$ 为待定常数.

一阶常系数非齐次线性差分方程的特解:$f(t)$ $=$ $P_{m}(t)$ 且 $a$ $=$ $-1$(B032)

问题

已知,有一阶常系数非齐次线性差分方程:
$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$.

其中,非齐次项 $f(t)$ $=$ $P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$

且:$a$ $=$ $-1$.

则,试取特解的形式 $y_{t}^{*}$ $=$ $?$

选项

[A].   $y_{t}^{*}$ $=$ $t$

[B].   $y_{t}^{*}$ $=$ $\frac{1}{t}$ $Q_{m}(t)$

[C].   $y_{t}^{*}$ $=$ $Q_{m}(t)$

[D].   $y_{t}^{*}$ $=$ $t$ $Q_{m}(t)$


显示答案

$y_{t}^{*}$ $=$ $t$ $Q_{m}(t)$

其中,$Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$, 其中 $B_{0}$, $B_{1}$, $\cdots$, $B_{m}$ 为待定常数.

一阶常系数非齐次线性差分方程的特解:$f(t)$ $=$ $P_{m}(t)$ 且 $a$ $\neq$ $-1$(B032)

问题

已知,有一阶常系数非齐次线性差分方程:
$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$.

其中,非齐次项 $f(t)$ $=$ $P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$

且:$a$ $\neq$ $-1$.

则,试取特解的形式 $y_{t}^{*}$ $=$ $?$

选项

[A].   $y_{t}^{*}$ $=$ $Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $+$ $\cdots$ $+$ $B_{m}$

[B].   $y_{t}^{*}$ $=$ $Q_{m}(t)$ $=$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$

[C].   $y_{t}^{*}$ $=$ $Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$

[D].   $y_{t}^{*}$ $=$ $Q_{m}(t)$ $=$ $B_{0}$ $t$ $+$ $B_{1}$ $t^{2}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m+1}$


显示答案

$y_{t}^{*}$ $=$ $Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$, 其中 $B_{0}$, $B_{1}$, $\cdots$, $B_{m}$ 为待定常数.

齐次差分方程通解的形式(B032)

问题

已知,$C$ 为任意常数,则以下哪个是齐次差分方程通解的形式?

选项

[A].   $y_{C}(t)$ $=$ $(-a)^{t}$ $+$ $C$

[B].   $y_{C}(t)$ $=$ $C$ $\cdot$ $(a)^{t+1}$

[C].   $y_{C}(t)$ $=$ $C$ $\cdot$ $(a)^{t}$

[D].   $y_{C}(t)$ $=$ $C$ $\cdot$ $(-a)^{t}$


显示答案

$y_{C}(t)$ $=$ $C$ $\cdot$ $(-a)^{t}$

一阶常系数非齐次线性差分方程的一般形式(B032)

问题

已知,$f(t)$ $\neq$ $0$, $a$ 为非零常数,则,以下哪个选项是一阶常系数非齐次线性差分方程的一般形式?

选项

[A].   $y_{t+1}$ $-$ $a$ $y_{t}$ $=$ $f(t)$

[B].   $a$ $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$

[C].   $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $0$

[D].   $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$


显示答案

$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$

差分方程解的可加性(B032)

问题

已知:

$\overline{y_{t}}$ 与 $\widetilde{y_{t}}$ 分别是差分方程 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{1}(t)$ 和 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{2}(t)$ 的解。

则,以下哪个选项是差分方程 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{1}(t)$ $+$ $f_{2}(t)$ 的解?

选项

[A].   $\frac{\overline{y_{t}}}{\widetilde{y_{t}}}$

[B].   $\overline{y_{t}}$ $\times$ $\widetilde{y_{t}}$

[C].   $$

[D].   $\overline{y_{t}}$ $-$ $\widetilde{y_{t}}$


显示答案

$\overline{y_{t}}$ $+$ $\widetilde{y_{t}}$

非齐次差分方程通解的构成(B032)

问题

已知:

$y^{*}$ 是非齐次差分方程的一个特解;$y_{C}(t)$ 是相应齐次差分方程的通解。

则,相应的非齐次差分方程的通解为:$y_{t}$ $=$ $?$

选项

[A].   $y_{t}$ $=$ $y_{C}(t)$ $\times$ $y_{t}^{*}$

[B].   $y_{t}$ $=$ $y_{C}(t)$ $-$ $y_{t}^{*}$

[C].   $y_{t}$ $=$ $y_{C}(t)$ $+$ $y_{t}^{*}$

[D].   $y_{t}$ $=$ $\frac{y_{C}(t)}{y_{t}^{*}}$


显示答案

$y_{t}$ $=$ $y_{C}(t)$ $+$ $y_{t}^{*}$

一阶常系数齐次线性差分方程的构型(B032)

问题

已知,$a$ 为非零常数,则以下哪个选项可以被称为一阶常系数齐次线性差分方程?

选项

[A].   $y_{t+1}$ $\times$ $a$ $y_{t}$ $=$ $0$

[B].   $y_{t+1}$ $+$ $y_{t}$ $=$ $a$

[C].   $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $1$

[D].   $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $0$


显示答案

$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $0$

求解可降阶的微分方程:$y^{\prime \prime}$ $=$ $f(y, y^{\prime})$(B031)

问题

如何将微分方程 $y^{\prime \prime}$ $=$ $f(y, y^{\prime})$ 降阶为一阶微分方程?

选项

[A].   令 $u$ $=$ $y^{\prime}$, 则有:$u$ $u^{\prime}$ $=$ $f(y, u u^{\prime})$

[B].   令 $u$ $=$ $y^{\prime}$, 则有:$u^{\prime}$ $=$ $f(y, u)$

[C].   令 $u$ $=$ $y^{\prime}$, 则有:$u$ $u^{\prime \prime}$ $=$ $f(y, u^{\prime})$

[D].   令 $u$ $=$ $y^{\prime}$, 则有:$u$ $u^{\prime}$ $=$ $f(y, u)$


显示答案

观察可知,方程 $y^{\prime \prime}$ $=$ $f(y, y^{\prime})$ 的特点是不显含自变量 $x$, 于是

令 $u$ $=$ $y^{\prime}$, 则有 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ $=$ $\frac{\mathrm{d} u}{\mathrm{~d} x}$ $=$ $\frac{\mathrm{d} u}{\mathrm{~d} y}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $=$ $u$ $u^{\prime}$.

于是,微分方程 $y^{\prime \prime}$ $=$ $f(y, y^{\prime})$ 变为一个以 $y$ 为自变量,$u(y)$ 为末知函数的一阶微分方程:

$u$ $u^{\prime}$ $=$ $f(y, u)$.

求解可降阶的微分方程:$y^{\prime \prime}$ $=$ $f(x, y^{\prime})$(B031)

问题

如何将微分方程 $y^{\prime \prime}$ $=$ $f(x, y^{\prime})$ 降阶为一阶微分方程?

选项

[A].   令 $u$ $=$ $x^{\prime}(y)$, 则有:$u^{\prime}(y)$ $=$ $f(x, u)$

[B].   令 $u$ $=$ $x^{\prime}(y)$, 则有:$u^{\prime}(x)$ $=$ $f(x, u)$

[C].   令 $u$ $=$ $y^{\prime}(x)$, 则有:$u^{\prime \prime}(x)$ $=$ $f(x, u^{\prime})$

[D].   令 $u$ $=$ $y^{\prime}(x)$, 则有:$u^{\prime}(x)$ $=$ $f(x, u)$


显示答案

观察可知,方程 $y^{\prime \prime}$ $=$ $f(x, y^{\prime})$ 的特点是不显含末知函数 $y$, 于是:

令 $u$ $=$ $y^{\prime}(x)$, 则微分方程 $y^{\prime \prime}$ $=$ $f(x, y^{\prime})$ 即可变为一阶微分方程:

$u^{\prime}(x)$ $=$ $f(x, u)$

求解可降阶的微分方程:$y^{(n)}(x)$ $=$ $f(x)$(B031)

问题

已知 $(n)$ 表示 $n$ 阶导,则如何求出 $y^{(n)}(x)$ $=$ $f(x)$ 中的 $f(x)$ ?

选项

[A].   无法计算出 $f(x)$

[B].   对原式等号两端的表达式做 $n$ 次求导即可

[C].   对原式等号两端的表达式做 $n$ 次积分即可

[D].   对原式等号两端的表达式同时乘以 $\frac{1}{n}$ 次幂即可


显示答案

对原式等号两端的表达式做 $n$ 次积分即可