由已知求未知:先把未知式子的形式往已知式子的形式上凑

一、题目题目 - 荒原之梦

已知 $g(x)$ 在 $[a, b]$ 上连续, 并满足 $g\left(\frac{a+b}{2}+x\right)$ $=$ $-g\left(\frac{a+b}{2}-x\right)$ $\left(\forall x \in\left[0, \frac{b-a}{2}\right]\right)$, $\int_{0}^{\frac{b – a}{2}} g\left(\frac{a+b}{2}+t\right) \mathrm{d} t$ $=$ $A$, 则 $\int_{a}^{b} g(x) \mathrm{d} x$ $=$ $?$

难度评级:

继续阅读“由已知求未知:先把未知式子的形式往已知式子的形式上凑”

变限积分也是一种特殊的定积分:能转为定积分计算的可以尝试转为定积分进行计算

一、题目题目 - 荒原之梦

已知 $f(x)$ 有连续的一阶导数,$f(0)=0$, $f(a)=1$, $F(x)=\int_{0}^{x} f(t) f^{\prime}(2 a-t) \mathrm{d} t$, 则 $F(2 a)-2 F(a) = ?$

$$
(A) \quad 2
$$

$$
(B) \quad 0
$$

$$
(C) \quad 1
$$

$$
(D) \quad -1
$$

难度评级:

继续阅读“变限积分也是一种特殊的定积分:能转为定积分计算的可以尝试转为定积分进行计算”

解题不一定要单打独斗:单式问题变双式问题

一、题目题目 - 荒原之梦

已知 $f(x)$ 为连续函数,且 $\int_{0}^{\frac{\pi}{2}} f(x \cos x) \cos x \mathrm{~d} x=A$, 则 $\int_{0}^{\frac{\pi}{2}} f(x \cos x) x \sin x \mathrm{~d} x=?$

$$
(A) \quad 0
$$

$$
(B) \quad A
$$

$$
(C) \quad -A
$$

$$
(D) \quad 2 A
$$

难度评级:

继续阅读“解题不一定要单打独斗:单式问题变双式问题”

处理变限积分问题时除了可以尝试求导运算,还可以尝试积分运算

一、题目题目 - 荒原之梦

已知函数 $g(x)$ 在 $(0,+\infty)$ 连续,若令:

$$
F(x)=\int_{1}^{x}\left[g\left(t^{2}+\frac{x^{2}}{t^{2}}\right)-g\left(t+\frac{x^{2}}{t}\right)\right] \frac{\mathrm{d} t}{t}
$$

则 $F(x)$ 在 $[1,+\infty)$ 上为:

$$
(A) 单调升
$$

$$
(B) 单调降
$$

$$
(C) 常数
$$

难度评级:

继续阅读“处理变限积分问题时除了可以尝试求导运算,还可以尝试积分运算”

在一重积分中:只有积分变量可以被当作变量处理,其他“变量”都要视作常数

一、题目题目 - 荒原之梦

已知函数 $f(x)$ 在 $[-a, a]$ 上连续,且 $a>0$, $g(x)=\int_{-a}^{a}|x-t| f(t) \mathrm{d} t$, 则在 $[-a, a]$ 上是偶函数还是奇函数?

难度评级:

继续阅读“在一重积分中:只有积分变量可以被当作变量处理,其他“变量”都要视作常数”

通过嵌套变限积分判断式子整体的奇偶性

一、题目题目 - 荒原之梦

已知 $f(u)$ 为连续的偶函数,$a$ 是常数,则以下式子的奇偶性如何:

第 1 个式子:

$$
\int_{0}^{x}\left[\int_{a}^{u} t f(t) \mathrm{~d} t\right] \mathrm{~d} u
$$

第 2 个式子:

$$
\int_{0}^{x}\left[\int_{a}^{u} f(t) \mathrm{~d} t\right] \mathrm{~d} u
$$

第 3 个式子:

$$
\int_{a}^{x}\left[\int_{0}^{u} t f(t) \mathrm{~d} t\right] \mathrm{~d} u
$$

第 4 个式子:

$$
\int_{a}^{x}\left[\int_{0}^{u} f(t) \mathrm{~d} t\right] \mathrm{~d} u
$$

难度评级:

继续阅读“通过嵌套变限积分判断式子整体的奇偶性”

嵌套变限积分增强版:内层积分的被积函数和积分上下限中都含有外层被积变量

一、题目题目 - 荒原之梦

已知函数 $f(x)$ 连续,且 $\int_{1}^{2} f(x) \mathrm{d} x$ $=$ $1$, $F(t)$ $=$ $\int_{1}^{t}\left[f(y) \int_{y}^{t} f(x) \mathrm{d} x\right] \mathrm{d} y$, 则 $F^{\prime}(2) = ?$

注意:本题中的“嵌套积分”只是对一个一元函数做了两次积分运算,并不是二元函数所对应的“二重积分”——嵌套积分与二重积分就像复合函数和二元函数。

难度评级:

继续阅读“嵌套变限积分增强版:内层积分的被积函数和积分上下限中都含有外层被积变量”

不是所有一阶导等于零的点都是极值点:也可能是拐点(函数凹凸性发生改变的点)

一、题目题目 - 荒原之梦

设 $F(x)$ $=$ $\int_{0}^{x}(x-2 t) f(x-t) \mathrm{d} t, f(x)$ 可导且 $f^{\prime}(x)$ $<$ $0$. 则可以得出关于函数 $F(x)$ 的极值和凹凸性上的哪些结论?

难度评级:

继续阅读“不是所有一阶导等于零的点都是极值点:也可能是拐点(函数凹凸性发生改变的点)”

复合函数二阶导的题目:明确谁是谁的函数,谁是真自变量,谁是中间变量

一、题目题目 - 荒原之梦

令 $x=\mathrm{e}^{t}$, 则,方程 $a x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+b x \frac{\mathrm{d} y}{\mathrm{~d} x}+c y=0$ 可以转换为什么?

难度评级:

继续阅读“复合函数二阶导的题目:明确谁是谁的函数,谁是真自变量,谁是中间变量”

二重嵌套变限积分的求导:积分时由内向外进行,求导时由外向内进行

一、题目题目 - 荒原之梦

已知 $F(x)=\int_{0}^{x}\left(\int_{0}^{y^{2}} \frac{\sin t}{1+t^{2}} \mathrm{~d} t\right) \mathrm{d} y$, 则 $F^{\prime \prime}(x)= ?$

难度评级:

继续阅读“二重嵌套变限积分的求导:积分时由内向外进行,求导时由外向内进行”

当变限积分中出现自变量和它的函数时,仍然按照一般的变限积分求导方法计算即可

一、题目题目 - 荒原之梦

已知函数 $y=y(x)$ 由方程 $x-y=\int_{1}^{x+y} \sin ^{2} t \mathrm{~d} t$ 确定, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x} = ?$

难度评级:

继续阅读“当变限积分中出现自变量和它的函数时,仍然按照一般的变限积分求导方法计算即可”

参数方程求导:在一个等式的两个变量中,任意一个变量都可以看作另一个变量的函数

一、题目题目 - 荒原之梦

已知:

$$
\left\{\begin{array}{l}\mathrm{e}^{x}=3 t^{2}+2 \pi t+1, \\ t \sin y=y-\frac{\pi}{2}, \end{array}\right.
$$

其中,$t \geqslant 0$.

则 $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$ $=$ $?$

难度评级:

继续阅读“参数方程求导:在一个等式的两个变量中,任意一个变量都可以看作另一个变量的函数”