一、前言 
在本文中,我们一起学习极限的加、减、乘、除四则运算法则以及指数运算法则。
继续阅读“极限的四则运算和指数运算法则”用求和符号 $\sum$ 表示的求和运算是一种非常基本运算形式。在本文中,「荒原之梦考研数学」将通过地铁线路的方式,为同学们形象地解释单重求和与双重求和的计算思路。
继续阅读“用地铁线路理解单重求和与双重求和的计算”凑微分的目的就是将积分 $\int \Phi(x) \mathrm{~d} x$ 改写成 $\int f(\phi(x)) \mathrm{~d} \phi(x)$ 的形式,即:
$$
\int \textcolor{orange}{\Phi(x)} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\phi(x)}) \mathrm{~d} \textcolor{lightgreen}{\phi(x)}
$$
经过上述变换,就可以将积分变量从 $x$ 拓展成更复杂的 $\phi(x)$, 从而可以在大多数时候达到简化被积函数的作用。
在本文中,「荒原之梦考研数学」就给同学们汇总了考研数学(高等数学)解题过程中常用的凑微分公式。
继续阅读“常用的凑微分公式汇总”罗尔定理是高等数学和考研数学中一个基础且重要的定理,「荒原之梦考研数学」也使用一种非常直观的方式证明了罗尔定理。但是,我们在做题的时候就会发现,仅仅使用传统意义上的罗尔定理,有时候并不能非常好的完成解题,也就是说,罗尔定理需要“进化”。
在本文中,「荒原之梦考研数学」将通过在无穷意义上对罗尔定理的扩展,为同学们提供另一个解题视角。
继续阅读“在无穷意义上扩展的罗尔定理及其证明和应用”本文要阐述的是一个非常直观的结论,那就是“沿着直角坐标系中 $X$ 轴或者 $Y$ 轴方向上的平移变换,并不会改变驻点在函数中的绝对位置”。
这一结论成立的原因在于,只要我们不对直线做旋转操作,只是沿着水平或者垂直方向上对水平直线的移动并不会导致水平直线变得不水平(水平直线在平面上的斜向运动可以拆分为水平方向与垂直方向上的运动)。
接下来,「荒原之梦考研数学」将通过一个直观的示意图,解释清楚“平移变换不会改变函数中一个点是不是驻点”这一性质:
如图 01 所示,蓝色曲线是函数 $\textcolor{#6D9EEB}{\mathrm{Z} (x) }$ $=$ $- \left( x+2 \right)^{2} – 1$ 的函数图象,绿色曲线是函数 $\textcolor{#6AA84F}{\mathrm{K} (x)}$ $=$ $- x^{2} + 2$ 的函数图象,橙色曲线是函数 $\textcolor{#E69138}{\mathrm{F} (x)}$ $=$ $- \left( x-2 \right)^{2} + 3$ 的函数图象,且 $\mathrm{Z}(a_{2}) = \mathrm{Z}(b_{2})$, $\mathrm{K}(a_{0}) = \mathrm{K}(b_{0})$, $\mathrm{F}(a_{1}) = \mathrm{F}(b_{1})$:
可以看到,无论是将函数 $\mathrm{Z}(x)$ 沿着坐标系的 $X$ 轴和 $Y$ 轴方向平移到函数 $\mathrm{K}(x)$ 的位置,还是将函数 $\mathrm{F}(x)$ 沿着坐标系的 $X$ 轴和 $Y$ 轴方向平移到函数 $\mathrm{K}(x)$ 的位置,都不会改变驻点 $c_{2}$ 或 $c_{1}$ 在函数中的绝对位置。
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
罗尔定理是微分学中的一个非常重要的定理,也是引出拉格朗日中值定理和柯西中值定理的基础。但是,对罗尔定理的传统证明方法并不能非常直观的反映出罗尔定理的性质(不过,本文中仍然会给出基于传统数学方法的罗尔定理证明),所以,在本文中,「荒原之梦考研数学」将使用一种原创的方式,通过一个非常自然的过程,证明罗尔定理,因为我相信——
只 要 是 正 确 的 数 学 定 理 ,都 具 有 不 证 自 明 的 性 质 ,只 是 需 要 我 们 更 换 一 下 观 察 和 思 考 的 角 度 。
继续阅读“罗尔定理的本质:基于圆形的几何逻辑证明罗尔定理”在本文中,「荒原之梦考研数学」将通过汽车在公路上行驶时的加速和减速过程,来帮助同学们理解函数在一点处的可导性,或者说函数在一点处导数的存在性。
继续阅读“用汽车的加速度理解导数的存在性(一点处的可导性)”根据罗尔定理可知,如果函数 $f(x)$ 满足在闭区间 $[\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b}]$ 上连续;在开区间 $(\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$ 内可微分;在区间端点处的函数值相等,即 $f(\textcolor{#3C78D8}{a}) = f(\textcolor{#3C78D8}{b})$, 则至少有一个点 $\textcolor{#FFD966}{\xi} \in (\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$, 使得 $f^{\prime}(\textcolor{#FFD966}{\xi}) = 0$, 也就是说,$\textcolor{#FFD966}{\xi}$ 就是函数 $f(x)$ 的一个驻点。
那么,如果,$f(\textcolor{#3C78D8}{a}) = f(\textcolor{#3C78D8}{b}) = 0$, 也就是函数 $f(x)$ 与坐标轴的 $X$ 轴存在两个交点 $\textcolor{#3C78D8}{a}$ 和 $\textcolor{#3C78D8}{b}$ 的时候,是否就意味着在区间 $(\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$ 上一定会存在至少一个函数 $f(x)$ 的驻点呢?
在本文中,「荒原之梦考研数学」将为同学们深入图解这一问题。
继续阅读“有 $N$ 个零点的函数,一定至少有 $N-1$ 个驻点吗?”在高等数学的学习和做题中,我们常常能看到,在表述极值点的时候,只是用了横坐标,那么,极 值 点 究竟是一个“ 点 ”吗?
在本文中,「荒原之梦考研数学」将为同学们解开疑惑。
继续阅读“极值点是一个点吗?”关于“ 驻 点 ”到底是不是一个“ 点 ”,同学们在不同的学习资料中可能看到不同的结论。在本文中,「荒原之梦考研数学」将剖析造成这种“争议”的根本原因,消除同学们在理解“驻点”这一概念时的障碍。
继续阅读“驻点不是一个点吗?”在本文中,「荒原之梦考研数学」将通过一张关系图,为同学们讲解清楚与原函数和其一阶导函数相关的尖点、驻点、极值点、闭区间端点和最值点这 5 个“点”之间的包含和层次关系。
继续阅读“与原函数和一阶导函数相关的五个“点”之间的关系图:尖点、驻点、极值点、端点、最值点”下面的函数怎么做求导操作,计算速度更快一些:
$$
\begin{aligned}
y_{1} & = \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} \\ \\
y_{2} & = \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{6}
\end{aligned}
$$
我们知道,所谓周期函数就是满足下式的函数:
$$
f(x + T) = f(x)
$$
其中,常数 $T \neq 0$ 就是周期函数 $f(x)$ 的最小正周期。
在本文中,「荒原之梦考研数学」将定义一种具有和周期函数类似性质的“波纹函数”——
由于水波函数和周期函数具有一定程度上相似的性质,所以,我们在做题的时候,可以借助对周期函数的研究思路和研究波纹函数。
继续阅读“周期函数的兄弟:波纹函数”在「荒原之梦考研数学」的《高等数学中常见的2+5种”真未定式”和1+1种”假未定式”的解题思路图》这篇文章中,我们知道 $\frac{0}{0}$ 和 $\frac{\infty}{\infty}$ 是两种核心未定式。
既然是“未定式”,那么就存在“定”和“不定”两种状态:“定”就是存在极限,“不定”就是不存在极限。
在本文中,我们就主要讨论一下,当 $\frac{0}{0}$ 和 $\frac{\infty}{\infty}$ 存在极限的情况下,其分子和分母的正负性与式子极限的正负性之间关系的问题。
继续阅读“关于 $0/0$ 和 $\infty / \infty$ 型极限的正负性”