用地铁线路理解单重求和与双重求和的计算

一、前言 前言 - 荒原之梦

用求和符号 $\sum$ 表示的求和运算是一种非常基本运算形式。在本文中,「荒原之梦考研数学」将通过地铁线路的方式,为同学们形象地解释单重求和与双重求和的计算思路。

继续阅读“用地铁线路理解单重求和与双重求和的计算”

常用的凑微分公式汇总

一、前言 前言 - 荒原之梦

凑微分的目的就是将积分 $\int \Phi(x) \mathrm{~d} x$ 改写成 $\int f(\phi(x)) \mathrm{~d} \phi(x)$ 的形式,即:

$$
\int \textcolor{orange}{\Phi(x)} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\phi(x)}) \mathrm{~d} \textcolor{lightgreen}{\phi(x)}
$$

经过上述变换,就可以将积分变量从 $x$ 拓展成更复杂的 $\phi(x)$, 从而可以在大多数时候达到简化被积函数的作用。

在本文中,「荒原之梦考研数学」就给同学们汇总了考研数学(高等数学)解题过程中常用的凑微分公式。

继续阅读“常用的凑微分公式汇总”

2019 年考研数二第 21 题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2019 年考研数二第 21 题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)”

求复合函数偏导数的两种方式:先求导再代换、先代换再求导

一、题目题目 - 荒原之梦

难度评级:

继续阅读“求复合函数偏导数的两种方式:先求导再代换、先代换再求导”

计算质点和非质点之间引力的方法:微元法

一、题目题目 - 荒原之梦

如图 01 所示,$X$ 轴上有一个线密度为常数 $\mu$, 长度为 $l$ 的细杆 $\bar{L}$,若质量为 $m$ 的质点 $\dot{M}$ 到细杆右端的距离为 $a$, 且引力系数为 $k$, 则质点 $\dot{M}$ 和细杆 $\bar{L}$ 之间引力的大小 $F$ 可表示为什么?

计算质点和非质点之间引力的方法:微元法 | 荒原之梦考研数学 | 图 01.
图 01.
继续阅读“计算质点和非质点之间引力的方法:微元法”

在极限计算中使用反常积分的上下限时,一定要注意区分左右

一、题目题目 - 荒原之梦

判断下面反常积分的敛散性:

$$
\begin{aligned}
I_{1} & = \int_{− \infty}^{0} \frac{1}{x^{2}} \mathrm{e}^{\frac{1}{x}} \mathrm{~d} x \\ \\
I_{2} & = \int_{0}^{+ \infty} \frac{1}{x^{2}} \mathrm {e}^{\frac{1}{x}} \mathrm{~d} x
\end{aligned}
$$

继续阅读“在极限计算中使用反常积分的上下限时,一定要注意区分左右”

峰式田字格:确定变量含有绝对值的分段函数的复合运算要分几段计算

一、前言 前言 - 荒原之梦

在「荒原之梦考研数学」的《田字格分段函数融合法》这篇文章中,我们初步掌握了基于“田字格”这一工具确定涉及分段函数的计算时应该分几段考虑的问题。

在本文中,我将继续拓展“田字格”这一工具,在自变量含有绝对值运算的题目中,给同学们讲解一下如何使用“田字格”确定应该分几段计算含有分段函数的相关问题。

继续阅读“峰式田字格:确定变量含有绝对值的分段函数的复合运算要分几段计算”

用定积分的定义计算数列和时怎么确定积分上下限?

一、题目题目 - 荒原之梦

$$
\begin{aligned}
I_{1} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2}} \\ \\
I_{2} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2} \cdots \textcolor{orange}{ \left(1 + \frac{2n}{n} \right)^{2} } } \\ \\
\end{aligned}
$$

继续阅读“用定积分的定义计算数列和时怎么确定积分上下限?”

在无穷意义上扩展的罗尔定理及其证明和应用

一、前言 前言 - 荒原之梦

罗尔定理是高等数学和考研数学中一个基础且重要的定理,「荒原之梦考研数学」也使用一种非常直观的方式证明了罗尔定理。但是,我们在做题的时候就会发现,仅仅使用传统意义上的罗尔定理,有时候并不能非常好的完成解题,也就是说,罗尔定理需要“进化”。

在本文中,「荒原之梦考研数学」将通过在无穷意义上对罗尔定理的扩展,为同学们提供另一个解题视角。

继续阅读“在无穷意义上扩展的罗尔定理及其证明和应用”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress