构造函数的技巧:什么样的式子求导可能会产生 1 阶导和 0 阶导?

一、题目题目 - 荒原之梦

已知 $f(x)$ 可导, $f(0)=2$, 且 $f^{\prime}(x)$ $<$ $2 f(x)$, 则下列结论正确的是哪个 ( $\quad$ )

A. $f(-1)>2$

C. $f(1)>2 \mathrm{e}^{2}$

B. $f(-1)<\frac{2}{\mathrm{e}^{2}}$

D. $f(1)<2 \mathrm{e}^{2}$

难度评级:

继续阅读“构造函数的技巧:什么样的式子求导可能会产生 1 阶导和 0 阶导?”

式子复杂不要怕,先分析其“型”,再确定求解之“法”

一、题目题目 - 荒原之梦

已知:

$$
f(x) = \lim_{t \rightarrow x} \sin x \cdot \left( \frac{t}{x} \right)^{\frac{t^{3}}{t – x}}
$$

则:

$$
\lim_{x \rightarrow 0} \frac{f(x) – x}{x^{3}} = ?
$$

难度评级:

继续阅读“式子复杂不要怕,先分析其“型”,再确定求解之“法””

对抽象矩阵的运算可以转换为对该矩阵特征值的运算

一、题目题目 - 荒原之梦

已知 $3$ 阶矩阵 $A$ 满足 $A^{2} – A – 2E = O$, 且 $|A| = 2$. 将 $A$ 的第 $1$ 列的 $2$ 倍加到第 $3$ 列,再将第 $3$ 行的 $-2$ 倍加到第 $1$ 行得 $B$, 则 $|B + 3 E| = ?$

难度评级:

继续阅读“对抽象矩阵的运算可以转换为对该矩阵特征值的运算”

二次型的规范型不仅反映了二次型矩阵特征值的正负,还反映了二次型矩阵的秩

一、题目题目 - 荒原之梦

已知二次型 $f(x_{1}, x_{2}, x_{3})$ $=$ $(x_{1} + x_{2})^{2}$ $+$ $(x_{1} – 2x_{3})^{2}$ $+$ $(x_{2} + a x_{3})^{2}$ 的规范型为 $y_{1}^{2} + y_{2}^{2}$, 则 $a = ?$

难度评级:

继续阅读“二次型的规范型不仅反映了二次型矩阵特征值的正负,还反映了二次型矩阵的秩”

无穷小与有理化、积分、中值定理相结合的一道题目

一、题目题目 - 荒原之梦

当 $x \rightarrow 0$ 时,无穷小量:

$$
\begin{aligned}
& \alpha = \sqrt{1 + x \cos x} – \sqrt{1 + \sin x} \\
& \beta = \int _{0}^{e^{2x} – 1} \frac{\sin ^{2} t}{t} \mathrm{~d} t \\
& \gamma = \cos (\tan x) – \cos x
\end{aligned}
$$

的阶数由高到低次序为 ($\quad$)

难度评级:

继续阅读“无穷小与有理化、积分、中值定理相结合的一道题目”

荒原之梦网恭贺新春:2024 甲辰龙年