$\rm{arccot }$ $\;$ $x$ 的求导公式(B003)

问题

$\rm{arccot} \ x$ 的求导公式是什么?

选项

[A].   $(\rm{arccot} \ x)’$ $=$ $\frac{1}{1+x^{2}}$

[B].   $(\rm{arccot} \ x)’$ $=$ $\frac{-1}{1+x^{2}}$

[C].   $(\rm{arccot} \ x)’$ $=$ $\frac{1}{1-x^{2}}$

[D].   $(\rm{arccot} \ x)’$ $=$ $\frac{-1}{1-x^{2}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\rm{arccot} \ x)’$ $=$ $\frac{-1}{1+x^{2}}$

辅助图像:
arccot x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\arctan x$ 的求导公式(B003)

问题

$\arctan x$ 的求导公式是什么?

选项

[A].   $(\arctan x)’$ $=$ $\frac{1}{1+x^{2}}$

[B].   $(\arctan x)’$ $=$ $\frac{-1}{1-x^{2}}$

[C].   $(\arctan x)’$ $=$ $\frac{-1}{1+x^{2}}$

[D].   $(\arctan x)’$ $=$ $\frac{1}{1-x^{2}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\arctan x)’$ $=$ $\frac{1}{1+x^{2}}$

辅助图像:
arctan x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\arccos x$ 的求导公式(B003)

问题

$\arccos x$ 的求导公式是什么?

选项

[A].   $(\arccos x)’$ $=$ $\frac{1}{\sqrt{1+x^{2}}}$

[B].   $(\arccos x)’$ $=$ $\frac{-1}{\sqrt{1+x^{2}}}$

[C].   $(\arccos x)’$ $=$ $\frac{1}{\sqrt{1-x^{2}}}$

[D].   $(\arccos x)’$ $=$ $\frac{-1}{\sqrt{1-x^{2}}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\arccos x)’$ $=$ $\frac{-1}{\sqrt{1-x^{2}}}$

辅助图像:
arccos x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\arcsin x$ 的求导公式(B003)

问题

$\arcsin x$ 的求导公式是什么?

选项

[A].   $(\arcsin x)’$ $=$ $\frac{-1}{\sqrt{1-x^{2}}}$

[B].   $(\arcsin x)’$ $=$ $\frac{1}{\sqrt{1+x^{2}}}$

[C].   $(\arcsin x)’$ $=$ $\frac{1}{\sqrt{1-x^{2}}}$

[D].   $(\arcsin x)’$ $=$ $\frac{-1}{\sqrt{1+x^{2}}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\arcsin x)’$ $=$ $\frac{1}{\sqrt{1-x^{2}}}$

辅助图像:
arcsin x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\ln x$ 的求导公式(B003)

问题

$\ln x$ 的求导公式是什么?

选项

[A].   $(\ln x)’$ $=$ $\ln x$

[B].   $(\ln x)’$ $=$ $x$

[C].   $(\ln x)’$ $=$ $\frac{-1}{x}$

[D].   $(\ln x)’$ $=$ $\frac{1}{x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\ln x)’$ $=$ $\frac{1}{x}$

辅助图像:
ln x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\log_{a}^{x}$ 的求导公式(B003)

问题

$\log_{a}^{x}$ 的求导公式是什么?
其中,$a$ 为常数.

选项

[A].   $(\log_{a}^{x})’$ $=$ $\frac{1}{\ln a}$

[B].   $(\log_{a}^{x})’$ $=$ $x \ln a$

[C].   $(\log_{a}^{x})’$ $=$ $\frac{1}{x \ln a}$

[D].   $(\log_{a}^{x})’$ $=$ $\frac{1}{a \ln x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\log_{a}^{x})’$ $=$ $\frac{1}{x \ln a}$

辅助图像:
log_{a}^{x} 的求导公式-高等数学-荒原之梦
图 01. 当 $a$ $=$ $10$ 时,红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$e^{x}$ 的求导公式(B003)

问题

$e^{x}$ 的求导公式是什么?

选项

[A].   $(e^{x})’$ $=$ $1$

[B].   $(e^{x})’$ $=$ $e^{x}$

[C].   $(e^{x})’$ $=$ $ex$

[D].   $(e^{x})’$ $=$ $e$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(e^{x})’$ $=$ $e^{x}$

辅助图像:
e^x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像.

基本求导公式:

$a^{x}$ 的求导公式(B003)

问题

$a^{x}$ 的求导公式是什么?
其中,$a$ 为常数.

选项

[A].   $(a^{x})’$ $=$ $\ln a^{x}$

[B].   $(a^{x})’$ $=$ $a \ln a$

[C].   $(a^{x})’$ $=$ $\frac{x}{a}$

[D].   $(a^{x})’$ $=$ $a^{x} \ln a$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(a^{x})’$ $=$ $a^{x} \ln a$

辅助图像:
a^x 的求导公式-高等数学-荒原之梦
图 01. 当 $a$ $=$ $10$ 时,红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\csc x$ 的求导公式(B003)

问题

$\csc x$ 的求导公式是什么?

选项

[A].   $(\csc x)’$ $=$ $\csc x \cdot \cot x$

[B].   $(\csc x)’$ $=$ $- \csc x \cdot \cot x$

[C].   $(\csc x)’$ $=$ $- \sec x \cdot \cot x$

[D].   $(\csc x)’$ $=$ $\csc x – \cot x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\csc x)’$ $=$ $(\frac{1}{\sin x})’$ $=$ $- \csc x \cdot \cot x$

辅助图像:
csc x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\sec x$ 的求导公式(B003)

问题

$\sec x$ 的求导公式是什么?

选项

[A].   $(\sec x)’$ $=$ $\sec x \cdot \tan x$

[B].   $(\sec x)’$ $=$ $\csc x + \tan x$

[C].   $(\sec x)’$ $=$ $\csc x \cdot \tan x$

[D].   $(\sec x)’$ $=$ $\sec x – \tan x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\sec x)’$ $=$ $(\frac{1}{\cos})’$ $=$ $\sec x \cdot \tan x$

辅助图像:
sec x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\cot x$ 的求导公式(B003)

问题

$\cot x$ 的求导公式是什么?

选项

[A].   $(\cot x)’$ $=$ $\sec^{2} x$

[B].   $(\cot x)’$ $=$ $- \sec^{2} x$

[C].   $(\cot x)’$ $=$ $\csc^{2} x$

[D].   $(\cot x)’$ $=$ $- \csc^{2} x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\cot x)’$ $=$ $- \csc^{2} x$ $=$ $-(\frac{1}{\sin x})^{2}$

辅助图像:
cot x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\tan x$ 的求导公式(B003)

问题

$\tan x$ 的求导公式是什么?

选项

[A].   $(\tan x)’$ $=$ $\sec x$

[B].   $(\tan x)’$ $=$ $\sec^{2} x$

[C].   $(\tan x)’$ $=$ $\csc x$

[D].   $(\tan x)’$ $=$ $\csc^{2} x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\tan x)’$ $=$ $\sec^{2} x$ $=$ $(\frac{1}{\cos x})^{2}$

辅助图像:
tan x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\cos x$ 的求导公式(B003)

问题

$\cos x$ 的求导公式是什么?

选项

[A].   $(\cos x)’$ $=$ $- \cos x$

[B].   $(\cos x)’$ $=$ $\cos x$

[C].   $(\cos x)’$ $=$ $\sin x$

[D].   $(\cos x)’$ $=$ $- \sin x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\cos x)’$ $=$ $- \sin x$

辅助图像:
cos x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$\sin x$ 的求导公式(B003)

问题

$\sin x$ 的导数是什么?

选项

[A].   $(\sin x)’$ $=$ $- \cos x$

[B].   $(\sin x)’$ $=$ $\sin x$

[C].   $(\sin x)’$ $=$ $\cos x$

[D].   $(\sin x)’$ $=$ $- \sin x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(\sin x)’$ $=$ $\cos x$

辅助图像:
sin x 的求导公式-高等数学-荒原之梦
图 01. 红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

$(x^{\alpha})’$ 的求导公式(B003)

问题

$x^{\alpha}$ 的导数是什么?
其中,$\alpha$ 为常数.

选项

[A].   $(x^{\alpha})’$ $=$ $\alpha x^{\alpha}$

[B].   $(x^{\alpha})’$ $=$ $\alpha x^{\alpha + 1}$

[C].   $(x^{\alpha})’$ $=$ $\alpha x^{\alpha – 1}$

[D].   $(x^{\alpha})’$ $=$ $(\alpha – 1)$ $x^{\alpha}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(x^{\alpha})’$ $=$ $\alpha x^{\alpha – 1}$

辅助图像:
x^{\alpha} 的求导公式-高等数学-荒原之梦
图 01. 当 $\alpha$ $=$ $3$ 时,红色曲线表示本题中原函数的图像,蓝色曲线表示本题中原函数的导函数图像.

基本求导公式:

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress