莱布尼兹公式是什么?(B003)

问题

若函数 $a(x)$ 和 $b(x)$ 均 $n$ 阶可导,则以下关于函数 $a(x) \cdot b(x)$ 的 $n$ 阶导【$(ab)^{(n)}$】,正确的是哪个选项?
(Tips:莱布尼兹公式是两个函数乘积的求导法则, 可用于计算两个函数乘积的高阶导数.)

选项

[A].   $(ab)^{(n)}$ $=$ $\sum_{i = 0}^{n}$ $C_{n}^{i}$ $a^{(n + i))} b^{(i)}$

[B].   $(ab)^{(n)}$ $=$ $\sum_{i = 0}^{n}$ $A_{n}^{i}$ $a^{(n – i))} b^{(i)}$

[C].   $(ab)^{(n)}$ $=$ $\sum_{i = 1}^{n}$ $C_{n}^{i}$ $a^{(n – i))} b^{(i)}$

[D].   $(ab)^{(n)}$ $=$ $\sum_{i = 0}^{n}$ $C_{n}^{i}$ $a^{(n – i))} b^{(i)}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(ab)^{(n)}$ $=$ $\sum_{i = 0}^{n}$ $C_{n}^{i}$ $a^{(n – i))} b^{(i)}$ $=$ $C_{n}^{0}$ $a^{(n)}b^{(0)}$ $+$ $C_{n}^{1}$ $a^{(n – 1)}b’$ $+$ $C_{n}^{2}$ $a^{(n – 2)} {b}^{”}$ $+$ $\cdots$ $C_{n}^{k}$ $a^{(n – k)}b^{(k)}$ $+$ $\cdots$ $+$ $C_{n}^{n}$ $a^{(0)}b^{(n)}$

组合的计算示例:
$C_{5}^{3}$ $=$ $\frac{5 \times 4 \times 3}{3 \times 2 \times 1}$ $=$ $10$

此外:$C_{n}^{0}$ $=$ $C_{n}^{n}$ $=$ $1$
$a^{(0)}$ $=$ $a$
$b^{(0)}$ $=$ $b$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress