问题
增加、删除或者更改级数中的有限项是否会影响级数的敛散性?选项
[A]. 不确定[B]. 影响
[C]. 不影响
[D]. 不知道
$\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $+$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $+$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$
$\oint_{\Gamma}$ $P$ $\mathrm{~d} x$ $+$ $Q$ $\mathrm{~d} y$ $+$ $R$ $\mathrm{~d} z$ $=$ $\iint_{\Sigma}$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\mathrm{d} y$ $\mathrm{~d} z$ $+$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\mathrm{~d} z \mathrm{~d} x$ $+$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\mathrm{~d} x \mathrm{~d} y$ $=$ $\iint_{\Sigma}\left|\begin{array}{ccc} \mathrm{d} y \mathrm{~d} z & \mathrm{~d} z \mathrm{~d} x & \mathrm{~d} x \mathrm{~d} y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$ $=$ $\iint_{\Sigma}\left|\begin{array}{ccc}\cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right| \mathrm{d} S.$
其中,$n$ $=$ $($ $\cos \alpha$, $\cos \beta$, $\cos \gamma$ $)$ 为 $\Sigma$ 的单位法向量.
$P$ $\mathrm{d} y \mathrm{d} z$ $+$ $Q$ $\mathrm{d} z \mathrm{d} x$ $+$ $R$ $\mathrm{d} x \mathrm{d} y$ $=$ $\iiint_{\Omega}$ $($ $\frac{\partial P}{\partial x}$ $+$ $\frac{\partial Q}{\partial y}$ $+$ $\frac{\partial R}{\partial z}$ $)$ $\mathrm{d} V$
或记作: $($ $P$ $\cos \alpha$ $+$ $Q$ $\cos \beta$ $+$ $R$ $\cos \gamma$ $)$ $\mathrm{d} S$ $=$ $\iiint_{\Omega}$ $($ $\frac{\partial P}{\partial x}$ $+$ $\frac{\partial Q}{\partial y}$ $+$ $\frac{\partial R}{\partial z}$ $)$ $\mathrm{d} V$
其中,$\partial \Omega$ 是空间 $\Omega$ 整个边界曲面的外侧,$\cos \alpha$, $\cos \beta$, $\cos \gamma$ 为 $\partial \Omega$ 的外法向量的方向余弦。
注意:所谓“单连通区域”就是光滑连续没有“洞”的区域.
$\oint_{L}$ $P$ $\mathrm{~d} x$ $+$ $Q$ $\mathrm{~d} y$ 与路径无关 $\Leftrightarrow$ $\oint_{L}$ $P$ $\mathrm{~d} x$ $+$ $Q$ $\mathrm{~d} y$ $=$ $0$ $\Leftrightarrow$ $\frac{\partial Q}{\partial x}$ $=$ $\frac{\partial P}{\partial y}$, $\forall(x, y)$ $\in$ $D$ $\Leftrightarrow$ 存在函数 $u(x, y)$, $(x, y)$ $\in$ $D$, 使得 $\mathrm{d}$ $u(x, y)$ $=$ $P$ $\mathrm{~d} x$ $+$ $Q$ $\mathrm{~d} y$, 此时 $u(x, y)$ $=$ $\int_{\left(x_{0}, y_{0}\right)}^{(x, y)}$ $P$ $\mathrm{~d} x$ $+$ $Q$ $\mathrm{~d} y$.
其中,以下选项中的 $G$ 为引力常数.
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.