问题
已知物体占有空间区域 $\Omega$, 在点 $(x, y, z)$ 处的密度为 $\rho(x, y, z)$, $\Omega$ 外有一质点 $M_{0}$ $($ $x_{0}$, $y_{0}$, $z_{0}$ $)$, 其质量为 $m_{0}$, 假定 $\rho(x, y, z)$ 在 $\Omega$ 上连续,则该物体对质点的引力为 $\boldsymbol{F}$ $=$ $\{$ $F_{x}$, $F_{y}$, $F_{z}$ $\}$, 则 $F_{x}$ $=$ $?$, $F_{y}$ $=$ $?$, $F_{z}$ $=$ $?$其中,以下选项中的 $G$ 为引力常数.
选项
[A].$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.
[B].
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.
[C].
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x+x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.
[D].
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]}$ $\mathrm{~d} v$.
$F_{x}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{y}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$,
$F_{z}$ $=$ $\iiint_{\Omega}$ $\frac{G m_{0} \rho(x, y, z)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{3}{2}}}$ $\mathrm{~d} v$.