旋度的定义(B022)

问题

已知 $\boldsymbol{A}(x, y, z)$ $=$ $P(x, y, z)$ $\boldsymbol{i}$ $+$ $Q(x, y, z)$ $\boldsymbol{j}$ $+$ $R(x, y, z)$ $\boldsymbol{k}$, 则旋度 $\boldsymbol{r o t} \mathbf{A}$ $=$ $?$

选项

[A].   $\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $+$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $+$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$

[B].   $\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $+$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $+$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} P & Q & R \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \end{array}\right|$

[C].   $\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $\times$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $\times$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$

[D].   $\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $+$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $-$ $($ $\frac{\partial P}{\partial z}$ $+$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $-$ $($ $\frac{\partial Q}{\partial x}$ $+$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\boldsymbol{r o t} \mathbf{A}$ $=$ $($ $\frac{\partial R}{\partial y}$ $-$ $\frac{\partial Q}{\partial z}$ $)$ $\boldsymbol{i}$ $+$ $($ $\frac{\partial P}{\partial z}$ $-$ $\frac{\partial R}{\partial x}$ $)$ $\boldsymbol{j}$ $+$ $($ $\frac{\partial Q}{\partial x}$ $-$ $\frac{\partial P}{\partial y}$ $)$ $\boldsymbol{k}$ $=$ $\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress