一、前言 
已知微分方程中 $y$ 是 $x$ 的函数,即 $y = y(x)$, 那么,为什么对微分方程 $\frac{y^{\prime}}{y}$ $=$ $\frac{-1}{x}$ 左右两边同时进行的积分对应的式子是:
$$
\textcolor{lightgreen}{
\int \frac{1}{y} \mathrm{~d} y = \int \frac{-1}{x} \mathrm{~d} x
}
$$
而不是:
$$
\textcolor{yellow}{
\int \frac{1}{y} \mathrm{~d} x = \int \frac{-1}{x} \mathrm{~d} x
}
$$
同时,在本文中,「荒原之梦考研数学」也会从底层原理的角度,给同学们讲清楚为什么式子 $\int \frac{1}{y} \mathrm{~d} y$ 和 $\int \frac{-1}{x} \mathrm{~d} x$ 是相等的。
继续阅读“为什么对 $y$ 的积分和对 $x$ 的积分可以相等?”