一、题目
设 $n$ 为正整数,记 $S_{n}$ 为曲线 $y = \mathrm{e}^{-x} \sin x$ $\left( 0 \leqslant x \leqslant n \pi \right)$ 与 $x$ 轴所围图形的面积,求 $S_{n}$, 并求 $\lim_{n \rightarrow \infty } S_{n}$.
难度评级:
二、解析 
根据「荒原之梦考研数学」的文章《周期函数的兄弟:波纹函数》和《单路径约束法:快速判断一个函数是否为周期函数》可知,题目中的函数 $y = \mathrm{e}^{-x} \sin x$ 是一个波纹函数。
接着,当 $k$ $=$ $0$, $1$, $2$, $\cdots$ 时,有:
$$
\textcolor{yellow}{
\sin \left( k \pi \right) = 0
}
$$
于是:
$$
\textcolor{violet}{
\mathrm{e}^{-k \pi} \sin \left( k \pi \right) = 0
}
$$
进一步分析可知,当 $k$ 为奇数时,$k + 1$ 为偶数,此时:
$$
\begin{aligned}
& \int_{k \pi}^{(k+1) \pi} \mathrm{e}^{-x} \sin x \mathrm{~d} x < 0 \\ \\ \textcolor{lightgreen}{ \leadsto } \ & \textcolor{yellow}{ \left( -1 \right)^{k} < 0 } \\ \\ \textcolor{lightgreen}{ \leadsto } \ \textcolor{lightgreen}{ \left( -1 \right)^{k} } & \textcolor{lightgreen}{ \int_{k \pi}^{(k+1) \pi} \mathrm{e}^{-x} \sin x \mathrm{~d} x > 0 }
\end{aligned}
$$
当 $k$ 为偶数时,$k + 1$ 为奇数,此时:
$$
\begin{aligned}
& \int_{k \pi}^{(k+1) \pi} \mathrm{e}^{-x} \sin x \mathrm{~d} x > 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{yellow}{ \left( -1 \right)^{k} > 0 } \\ \\
\textcolor{lightgreen}{ \leadsto } \ \textcolor{lightgreen}{ \left( -1 \right)^{k} } & \textcolor{lightgreen}{ \int_{k \pi}^{(k+1) \pi} \mathrm{e}^{-x} \sin x \mathrm{~d} x > 0 }
\end{aligned}
$$
又因为,当 $\textcolor{orange}{ k = 0 }$ 时,$\textcolor{magenta}{ k \pi = 0 }$, 当 $\textcolor{orange}{ k = n-1 }$ 时,$\textcolor{magenta}{ (k + 1) \pi = n \pi }$.
于是,在区间 $\left( 0, n \pi \right)$ 上,有:
$$
S_{n} = \sum_{\textcolor{orange}{ k = 0 }}^{\textcolor{orange}{ n-1 }}(-1)^{k} \int_{\textcolor{magenta}{ k \pi }}^{\textcolor{magenta}{ (k+1) \pi }} \mathrm{e}^{-x} \sin x \mathrm{~d} x
$$
接着,根据「荒原之梦考研数学」的《考研数学解题思路积累:和 $\mathrm{e}^{x}$ 有关的那些式子》这篇文章可知:
$$
\textcolor{yellow}{
\int \mathrm{e}^{-x} \sin x \mathrm{~d} x = \frac{-1}{2} \mathrm{e}^{-x} ( \sin x + \cos x )
}
$$
于是:
$$
\begin{aligned}
\textcolor{springgreen}{\boldsymbol{ S_{n} }} & = \sum_{k = 0}^{n-1} (-1)^{k} \int_{k \pi }^{(k+1) \pi} \textcolor{yellow}{ \mathrm{e}^{-x} \sin x } \mathrm{~d} x \\ \\
& = \sum_{k = 0}^{n−1} ( −1 )^{k} \left[ \textcolor{yellow}{ \frac{-1}{2} \mathrm{e}^{−x}\left(\sin x + \cos x\right) } \right] \Bigg|_{k \pi }^{ (k + 1) \pi } \\ \\
& = \frac{1}{2} \sum_{k = 0}^{n – 1} \textcolor{orangered}{ (-1)^{k+1} } \left[ \mathrm{e}^{-(k + 1) \pi} \textcolor{orangered}{ (-1)^{k+1} } – \mathrm{e}^{- k \pi} \textcolor{orangered}{ (-1)^{k} } \right] \\ \\
& = \frac{1}{2} \sum_{k = 0}^{n – 1} \textcolor{orangered}{ (-1)^{k+1+k+1 + k} } \left[ \mathrm{e}^{-(k + 1) \pi} – \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \sum_{k = 0}^{n – 1} \textcolor{orangered}{ (-1)^{3k+2} } \left[ \mathrm{e}^{-(k + 1) \pi} – \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \sum_{k = 0}^{n – 1} \textcolor{orangered}{ 1 } \left[ \mathrm{e}^{-(k + 1) \pi} – \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \textcolor{#c4cbcf}{ \sum_{k = 0}^{n – 1} } \left[ \mathrm{e}^{-(k+1) \pi } + \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \left[ \textcolor{#c4cbcf}{ \sum_{k = 0}^{n – 1} } \textcolor{#57c3c2}{ \mathrm{e}^{-(k+1) \pi } } + \textcolor{#c4cbcf}{ \sum_{k = 0}^{n – 1} } \mathrm{e}^{- k \pi} \right] \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{f = k + 1} \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{ k \in \left( 0, n-1 \right) } \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{ f \in \left( 1, n \right) } \\ \\
& = \frac{1}{2} \left[ \textcolor{#f0f5e5}{ \sum_{f = 1}^{n} } \textcolor{#57c3c2}{ \mathrm{e}^{- f \pi } } + \textcolor{#c4cbcf}{ \sum_{k = 0}^{n – 1} } \textcolor{#fed71a}{ \mathrm{e}^{- k \pi} } \right] \\ \\
& = \frac{1}{2} \left[ \textcolor{#f0f5e5}{ \sum_{f = 1}^{n} } \mathrm{e}^{- f \pi } + \textcolor{#fed71a}{\mathrm{e}^{0}} + \textcolor{#f0f5e5}{ \sum_{k = 1}^{n – 1} } \textcolor{#fed71a}{ \mathrm{e}^{- k \pi} } \right] \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{k = f} \\ \\
& = \frac{1}{2} \left[ \textcolor{#b2cf87}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi } } + \textcolor{#fed71a}{1} + \textcolor{#f0f5e5}{ \sum_{k = 1}^{n – 1} } \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \left[ \textcolor{#b2cf87}{ \sum_{k = 1}^{n-1} \mathrm{e}^{- k \pi } } + \textcolor{#b2cf87}{\mathrm{e}^{- n \pi}} + \textcolor{#fed71a}{1} + \textcolor{#f0f5e5}{ \sum_{k = 1}^{n – 1} } \mathrm{e}^{- k \pi} \right] \\ \\
& = \frac{1}{2} \left[ 1 + \textcolor{violet}{ 2 \sum_{k = 1}^{n – 1} \mathrm{e}^{- k \pi} } \ \textcolor{white}{\colorbox{red}{+}} \ \mathrm{e}^{- n \pi} \right] \\ \\
& = \frac{1}{2} \left[ 1 + \textcolor{violet}{ 2 \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} – 2 \mathrm{e}^{- n \pi} } \ \textcolor{white}{\colorbox{red}{+}} \ \mathrm{e}^{- n \pi} \right] \\ \\
& = \frac{1}{2} \left[ 1 + 2 \textcolor{pink}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} } \ \textcolor{black}{\colorbox{lightgreen}{-}} \ \mathrm{e}^{- n \pi} \right]
\end{aligned}
$$
又因为 $\textcolor{pink}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} }$ 展开之后其实是一个首项 $a_{1}$ $=$ $\mathrm{e}^{- \pi}$, 公比 $q$ $=$ $\mathrm{e}^{- \pi}$ 的等比数列的求和,即:
$$
\textcolor{pink}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} } = \mathrm{e}^{- \pi} + \mathrm{e}^{-2 \pi} + \mathrm{e}^{-3 \pi} + \cdots + \mathrm{e}^{- n \pi}
$$
所以,根据等比数列的求和公式可知:
$$
\textcolor{pink}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} } = \frac{a_{1} \cdot \left( 1 – q^{n} \right)}{1 – q} = \textcolor{pink}{ \frac{ \mathrm{e}^{- \pi} \left( 1 – \mathrm{e}^{- n \pi} \right) }{1 – \mathrm{e}^{- \pi}} }
$$
于是:
$$
\begin{aligned}
\textcolor{springgreen}{\boldsymbol{ S_{n} }} & = \frac{1}{2} \left[ 1 + 2 \textcolor{pink}{ \sum_{k = 1}^{n} \mathrm{e}^{- k \pi} } \ \textcolor{black}{\colorbox{lightgreen}{-}} \ \mathrm{e}^{- n \pi} \right] \\ \\
& = \frac{1}{2} \left[ 1 + 2 \cdot \textcolor{pink}{ \frac{ \mathrm{e}^{- \pi} \left( 1 – \mathrm{e}^{- n \pi} \right) }{1 – \mathrm{e}^{- \pi}} } \ – \ \mathrm{e}^{- n \pi} \right] \\ \\
\end{aligned}
$$
综上:
$$
\begin{aligned}
\lim_{n \rightarrow \infty} \boldsymbol{\textcolor{springgreen}{ S_{n} }} & = \lim_{n \rightarrow \infty} \frac{1}{2} \left[ 1 + 2 \cdot \frac{ \mathrm{e}^{- \pi} \left(1 – \mathrm{e}^{- n \pi} \right)}{1 – \mathrm{e}^{- \pi}} – \mathrm{e}^{- n \pi} \right] \\ \\
& = \frac{1}{2} + \lim_{n \rightarrow \infty} \frac{ \mathrm{e}^{- \pi} \left(1 – \mathrm{e}^{- n \pi} \right)}{1 – \mathrm{e}^{- \pi}} – \lim_{n \rightarrow \infty} \mathrm{e}^{- n \pi} \\ \\
& = \frac{1}{2} + \frac{ \mathrm{e}^{- \pi} \left(1 – \textcolor{magenta}{ \lim_{n \rightarrow \infty} \mathrm{e}^{- n \pi} } \right)}{1 – \mathrm{e}^{- \pi}} – \textcolor{magenta}{ \lim_{n \rightarrow \infty} \mathrm{e}^{- n \pi} } \\ \\
& = \frac{1}{2} + \frac{ \mathrm{e}^{- \pi} \left(1 – \textcolor{magenta}{ 0 } \right)}{1 – \mathrm{e}^{- \pi}} – \textcolor{magenta}{ 0 } \\ \\
& = \frac{1}{2} + \frac{ \mathrm{e}^{- \pi} }{1 – \mathrm{e}^{- \pi}} \\ \\
& = \frac{1}{2} + \frac{ \frac{1}{\mathrm{e}^{\pi}} }{1 – \frac{1}{\mathrm{e}^{\pi}}} \\ \\
& = \frac{1}{2} + \frac{1}{\textcolor{yellow}{ \mathrm{e}^{\pi} }} \cdot \frac{\textcolor{yellow}{ \mathrm{e}^{\pi} }}{\mathrm{e}^{\pi} – 1} \\ \\
& = \boldsymbol{\textcolor{springgreen}{ \frac{1}{2} + \frac{1}{\mathrm{e}^{\pi} – 1} }}
\end{aligned}
$$
即:
$$
\boldsymbol{\textcolor{springgreen}{ S_{n} = \frac{1}{2} + \frac{1}{\mathrm{e}^{\pi} – 1} }}
$$
拓展资料 
事实上,本题中的曲线函数 $y = \mathrm{e}^{-x} \sin x$ 的函数图像示意图如图 01 所示,其在区间 $\left( 0, n \pi \right)$ 上的函数图像看上去就像是一条“直线”:
即便我们将 $y = \mathrm{e}^{-x} \sin x$ 在区间 $\left( 0, n \pi \right)$ 上的函数图象再放大一些,其仍然看上去像是一条直线,如图 02 所示:
不过,当我们继续放大,就会看到波纹函数 $y = \mathrm{e}^{-x} \sin x$ “浅浅”的“波纹”了,如图 03 所示:
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。