平方与求导或许可以将被积函数中次幂不同的部分凑成相同的次幂

一、前言

我们知道,在对一个式子进行积分的时候,如果式子中自变量的次幂都是相同的,就会比较方便进行运算.

我们还知道,平方运算可以让一个式子的次幂增加(反过来看就是减少),例如 $\left( x^{\textcolor{#00bffe}{3}} \right)^{2}$ $=$ $x^{\textcolor{#00bffe}{6}}$; 而每次求导运算可以将一个式子的次幂减少 $1$ 次,例如 $\mathrm{d} \left( x^{\textcolor{yellow}{3}} \right)$ $=$ $\frac{1}{3} x^{\textcolor{yellow}{2}} \mathrm{~d} x$.

所以,对于被积函数中次幂不同部分,可以尝试通过平方运算与求导运算结合使用的方式,凑成相同的次幂.

继续阅读“平方与求导或许可以将被积函数中次幂不同的部分凑成相同的次幂”

不同的取整运算:取整、上取整、下取整

一、前言

在本文中,「荒原之梦考研数学」就来讨论一下高等数学中会遇到的三种取整运算:取整、上取整、下取整.

二、正文

在本文的前言部分,我之所以强调我们现在所讨论的取整、上取整和下取整运算是“高等数学”中的,是因为,在其他领域的语境下,“取整”运算指的是“四舍五入”运算,也就是说,在高等数学之外的领域,对 “$5.1$” 做取整操作,得到是 “$5$”, 而对 “$5.7$” 做取整操作,得到的是 “$6$”——

但是,在高等数学中,“ ”运算等同于“ ”运算,即“将一个实数 ”:

$$
\begin{aligned}
& \left[ 5.1 \right] = \lfloor 5.1 \rfloor = 5 \\ \\
& \left[ 5.7 \right] = \lfloor 5.7 \rfloor = 5
\end{aligned}
$$

同时,在高等数学中,“ ”运算,即“将一个实数 ”:

$$
\begin{aligned}
& \left[ 5.1 \right] = \lfloor 5.1 \rfloor = 6 \\ \\
& \left[ 5.7 \right] = \lfloor 5.7 \rfloor = 6
\end{aligned}
$$

三、例题

  1. 用夹逼准则求解取整函数的极限

同一个不定积分的不同计算结果真的只相差任意常数吗?

一、前言

我们知道,对不定积分的计算结果都要加上一个常数 $C$, 例如:

$$
\int f(x) \mathrm{~d} x = Z(x) + C
$$

也就是说,无论是 $Z(x) + 1$, $Z(x) + 2$, 还是 $Z(x) + 100$ 都是不定积分 $\int f(x) \mathrm{~d} x$ 的计算结果.

那么,是否存在一些不定积分,其结果可以表示为两个不同的函数,并且这两个函数之间并不是相差一个常数的关系呢?

在本文中,「荒原之梦考研数学」将通过两个例子,来讨论一下这一问题.

继续阅读“同一个不定积分的不同计算结果真的只相差任意常数吗?”

取对数的好处:将底数上的变量移动到指数上

一、前言

有些时候,当式子的底数和指数都含有变量的时候,就会难以直接进行求导运算. 此时,我们就可以先对原式取对数. 在本文中,「荒原之梦考研数学」将通过例题为同学们讲解对数的这一使用方式.

继续阅读“取对数的好处:将底数上的变量移动到指数上”

为什么不能在加减法中做局部的变量替换?因为等价无穷小是基于乘除法定义的

一、前言

在本文中,「荒原之梦考研数学」将从下面这个式子出发,为同学们讲解清楚,为什么我们不能对该式子分子中的 “$\ln (1 + \tan x)$” 做局部的等价无穷小替换:

$$
I = \lim_{x \rightarrow 0} \frac{x-\ln(1+\tan x)}{x^2} = ?
$$

继续阅读“为什么不能在加减法中做局部的变量替换?因为等价无穷小是基于乘除法定义的”

由两道题得出的有关自然对数 $\ln$ 的两个二级结论

一、前言

在本文中,「荒原之梦考研数学」将通过两道题目,总结出以下两个有关自然对数 $\ln$ 的二级结论:

$$
\begin{aligned}
& \lim_{x \rightarrow 0^{+}} x \ln x = 0; \\ \\
& \lim_{x \rightarrow 0^{+}} x^{a} \ln x = 0, \quad (a > 0).
\end{aligned}
$$

继续阅读“由两道题得出的有关自然对数 $\ln$ 的两个二级结论”

求一个变量的偏导数的时候,其他所有“同级变量”都可以看作常数

一、题目

已知,函数 $u$ $=$ $(x^{2} + y^{2})z^{2} + \sin x^{2}$,求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ 及 $\frac{\partial u}{\partial z}$.

继续阅读“求一个变量的偏导数的时候,其他所有“同级变量”都可以看作常数”

扩展数列或者级数的原则:一次是特例,两次成规律

一、前言

如果我们有一个数列如下:

$$
\{ x_{n} \} = \{ 1, 2, 3, \cdots, n \}
$$

那么,我们可以很容易地知道,数列 $\{ x_{n+1} \}$ 为:

$$
\{ x_{n+1} \} = \{ 1, 2, 3, \cdots, n, n+1 \}
$$

类似地,如果我们有一个级数如下:

$$
x_{n} = 1 + 2 + 3 + \cdots + n
$$

那么,我们可以很容易地知道,级数 $x_{n+1}$ 为:

$$
x_{n+1} = 1 + 2 + 3 + \cdots + n + (n + 1)
$$

现在的问题是:

继续阅读“扩展数列或者级数的原则:一次是特例,两次成规律”

为什么没有 $0 – 0$ 型未定式?

一、前言

在本文中,「荒原之梦考研数学」会首先给同学们介绍一下常见的未定式、以及这些常见的未定式为什么可能存在极限值,还有为什么不存在 $0 – 0$ 型的未定式.

继续阅读“为什么没有 $0 – 0$ 型未定式?”

次幂形式的极限未定式,一般都可以先尝试取对数

一、前言

在计算式子极限的时候,对于形如 $\infty^{0}$, $1^{\infty}$ 和 $0^{0}$ 这样的式子,我们一般都可以先尝试对其取自然对数 $\ln$, 因为这样可以将形如 $\infty^{0}$, $1^{\infty}$ 和 $0^{0}$ 极限,转换为形如 $\frac{\infty}{\infty}$ 或者 $\frac{0}{0}$ 的极限,从而就可以使用洛必达法则,或者其他求解极限的方式完成接下来的求解过程.

继续阅读“次幂形式的极限未定式,一般都可以先尝试取对数”

由 $\arctan$ 的三角恒等式得到的一个等价无穷小公式

一、前言

在本文中,「荒原之梦考研数学」将通过有关反三角函数 $\arctan$ 的一个恒等式,给出一个一般考研辅导资料中没有提到的等价无穷小公式.

继续阅读“由 $\arctan$ 的三角恒等式得到的一个等价无穷小公式”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress