在极限问题中,不要相信任何一个“等号”

一、题目题目 - 荒原之梦

二、解析 解析 - 荒原之梦

$$
\begin{aligned}
I & = \lim_{\textcolor{yellow}{ x \rightarrow + \infty }} \left[ \frac{x^{1+x}}{(1+x)^{x}} – \frac{x}{\mathrm{e}} \right] \\ \\
& = \lim_{ \textcolor{yellow}{x \rightarrow + \infty }} \left[ \frac{x \cdot \textcolor{orange}{x^{x}}}{(1+x)^{x}} – \frac{x}{\mathrm{e}} \right] \\ \\
& = \lim_{\textcolor{yellow}{x \rightarrow + \infty}} \left[ \frac{x}{ \frac{(1+x)^{x}}{\textcolor{orange}{x^{x}}}} – \frac{x}{\mathrm{e}} \right] \\ \\
& = \lim_{\textcolor{yellow}{x \rightarrow + \infty}} \left[ \frac{x}{ \left( \frac{1+x}{\textcolor{orange}{x}} \right)^{\textcolor{orange}{x}}} – \frac{x}{\mathrm{e}} \right] \\ \\
& = \lim_{\textcolor{yellow}{x \rightarrow + \infty}} \left[ \frac{x}{ \left(1 + \frac{1}{x} \right)^{x}} – \frac{x}{\mathrm{e}} \right]
\end{aligned}
$$

令 $\textcolor{violet}{ \frac{1}{x} }$ $\textcolor{violet}{ = }$ $\textcolor{violet}{t}$, $\textcolor{violet}{x}$ $\textcolor{violet}{=}$ $\textcolor{violet}{\frac{1}{t}}$, 则:

$$
\begin{aligned}
I & = \lim_{\textcolor{lightgreen}{ t \rightarrow 0^{+} }} \left[ \frac{\textcolor{violet}{ \frac{1}{t} }}{(1 + \textcolor{violet}{t})^{\textcolor{violet}{\frac{1}{t}}}} – \frac{\textcolor{violet}{\frac{1}{t}}}{\mathrm{e}} \right] \\ \\
& = \lim_{\textcolor{lightgreen}{ t \rightarrow 0^{+} }} \textcolor{violet}{\frac{1}{t}} \left[ \frac{1}{(1 + \textcolor{violet}{t})^{\textcolor{violet}{\frac{1}{t}}}} – \frac{1}{\mathrm{e}} \right] \\ \\
& = \lim_{\textcolor{lightgreen}{ t \rightarrow 0^{+} }} \textcolor{violet}{\frac{1}{t}} \left[ \frac{\mathrm{e}}{\mathrm{e}(1 + t)^{\frac{1}{t}}} – \frac{(1 + t)^{\frac{1}{t}}}{\mathrm{e} (1 + t)^{\frac{1}{t}}} \right] \\ \\
& = \lim_{\textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{\mathrm{e} – \textcolor{pink}{ (1+t)^{\frac{1}{t}}}}{\textcolor{violet}{t} \textcolor{tan}{ \mathrm{e} } (1+t)^{\frac{1}{t}}} \\ \\
& = \textcolor{tan}{ \frac{1}{\mathrm{e}} } \lim_{ \textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{\mathrm{e} – \textcolor{pink}{ \mathrm{e}^{\frac{1}{t} \ln (1+t)}}}{t \textcolor{orange}{ (1+t)^{\frac{1}{t}}}} \\ \\
& = \textcolor{tan}{ \frac{1}{\mathrm{e}} } \lim_{ \textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{ \mathrm{e} \left( 1 – \textcolor{pink}{ \mathrm{e}^{\frac{1}{t} \ln (1+t) – 1}} \right)}{t \textcolor{orange}{ \mathrm{e} }} \\ \\
& = \textcolor{tan}{ \frac{-1}{\mathrm{e}} } \lim_{ \textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{ \textcolor{pink}{ \mathrm{e}^{\frac{1}{t} \ln (1+t) – 1} – 1} }{t} \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{\lim_{t \rightarrow 0^{+} } \left[ \frac{1}{t} \ln (1+t) – 1 \right] = 0} \\ \\
& = \frac{-1}{\mathrm{e}} \lim_{ \textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{ \textcolor{pink}{ \mathrm{e}^{\frac{1}{t} \ln (1+t) – 1}} – 1 }{t} \\ \\
& = \frac{-1}{\mathrm{e}} \lim_{ \textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{ \mathrm{e}^{\frac{1}{t} \left[ \textcolor{red}{ \ln (1+t) – t } \right]} – 1 }{t} \\ \\
& = \frac{-1}{\mathrm{e}} \lim_{\textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{ \textcolor{red}{ \ln(1 + t ) – t } }{t^{2}} \\ \\
& = -\frac{1}{\mathrm{e}} \lim_{\textcolor{lightgreen}{t \rightarrow 0^{+}}} \frac{\textcolor{red}{ -\frac{1}{2} t^{2} } + o \left( t^{2} \right) } { t^{2}} \\ \\
& = \textcolor{springgreen}{\boldsymbol{ \frac{1}{2 \mathrm{e}} }}
\end{aligned}
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress