快速求导的策略:幂指数相同时先合并幂指数

一、前言 前言 - 荒原之梦

下面的函数怎么做求导操作,计算速度更快一些:

$$
\begin{aligned}
y_{1} & = \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} \\ \\
y_{2} & = \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{6}
\end{aligned}
$$

二、正文 正文 - 荒原之梦

函数 $y_{1}$ 的两种求导方法对比

对于函数 $y_{1}$, 直接进行求导的步骤如下( ):

$$
\begin{aligned}
y_{1} ^{\prime} & = \left[ \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} \right] ^{\prime} \\ \\
& = 3 \textcolor{tan}{ \left( x-1 \right) }^{2} \cdot \textcolor{tan}{1} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} + \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot 3 \textcolor{lightgreen}{ \left( x-2 \right) }^{2} \cdot \textcolor{lightgreen}{1} \\ \\
& = 3 \textcolor{tan}{ \left( x-1 \right) }^{2} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} + 3 \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{2} \\ \\
& = 3 \left[ \textcolor{tan}{\left( x-1 \right)}^{2} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{2} \right] \cdot \left[ \textcolor{lightgreen}{\left( x-2 \right)} + \textcolor{tan}{\left( x-1 \right)} \right]
\end{aligned}
$$

对于函数 $y_{1}$, 先合并幂指数,再进行求导的步骤如下( ):

$$
\begin{aligned}
y_{1} ^{\prime} & = \left[ \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{3} \right] ^{\prime} \\ \\
& = \left\{ \left[ \textcolor{tan}{\left( x-1 \right)} \textcolor{lightgreen}{\left( x-2 \right)} \right]^{3} \right\} ^{\prime} \\ \\
& = 3 \left[ \textcolor{tan}{\left( x-1 \right)} \textcolor{lightgreen}{\left( x-2 \right)} \right]^{2} \cdot \left[ \textcolor{tan}{1} \cdot \textcolor{lightgreen}{\left( x-2 \right)} + \textcolor{tan}{\left( x-1 \right)} \cdot \textcolor{lightgreen}{1} \right] \\ \\
& = 3 \left[ \textcolor{tan}{\left( x-1 \right)} \textcolor{lightgreen}{\left( x-2 \right)} \right]^{2} \cdot \left[ \textcolor{lightgreen}{\left( x-2 \right)} + \textcolor{tan}{\left( x-1 \right)} \right]
\end{aligned}
$$

函数 $y_{2}$ 的两种求导方法对比

对于函数 $y_{2}$, 直接进行求导的步骤如下( ):

$$
\begin{aligned}
y_{2}^{\prime} & = \left[ \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{6} \right] ^{\prime} \\ \\
& = 3 \textcolor{tan}{\left( x-1 \right)}^{2} \cdot \textcolor{tan}{1} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{6} + \textcolor{tan}{\left( x-1 \right)}^{3} \cdot 6 \textcolor{lightgreen}{\left( x-2 \right)}^{5} \cdot \textcolor{lightgreen}{1} \\ \\
& = 3 \textcolor{tan}{\left( x-1 \right)}^{2} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{6} + \textcolor{tan}{\left( x-1 \right)}^{3} \cdot 6 \textcolor{lightgreen}{\left( x-2 \right)}^{5} \\ \\
& = 3 \left[ \textcolor{tan}{\left( x-1 \right)}^{2} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{5} \right] \cdot \left[ \textcolor{lightgreen}{\left( x-2 \right)} + 2 \textcolor{tan}{\left( x-1 \right)} \right]
\end{aligned}
$$

对于函数 $y_{2}$, 先合并幂指数,再进行求导的步骤如下( ):

$$
\begin{aligned}
y_{2}^{\prime} & = \left[ \textcolor{tan}{ \left( x-1 \right) }^{3} \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{6} \right] ^{\prime} \\ \\
& = \left\{ \left[ \textcolor{tan}{ \left( x-1 \right) } \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{2} \right]^{3} \right\} ^{\prime} \\ \\
& = 3 \left[ \textcolor{tan}{ \left( x-1 \right) } \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{2} \right]^{2} \cdot \left[ \textcolor{tan}{1} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{2} + \textcolor{tan}{\left( x-1 \right) } \cdot 2 \textcolor{lightgreen}{\left( x-2 \right)} \cdot \textcolor{lightgreen}{1} \right] \\ \\
& = 3 \left[ \textcolor{tan}{ \left( x-1 \right) } \cdot \textcolor{lightgreen}{ \left( x-2 \right) }^{2} \right]^{2} \cdot \left[ \textcolor{lightgreen}{\left( x-2 \right)}^{2} + \textcolor{tan}{\left( x-1 \right) } \cdot 2 \textcolor{lightgreen}{\left( x-2 \right)} \right] \\ \\
& = 3 \left[ \textcolor{tan}{\left( x-1 \right)}^{2} \cdot \textcolor{lightgreen}{\left( x-2 \right)}^{5} \right] \cdot \left[ \textcolor{lightgreen}{\left( x-2 \right)} + 2 \textcolor{tan}{\left( x-1 \right)} \right]
\end{aligned}
$$

总上面的对比可以看出:

对于幂指数相同的乘积因式做求导运算时,先合并(或者说“提取”)幂指数可以简化运算;

对于幂指数不相同的乘积因式做求导运算时,不宜先合并幂指数,而适宜直接进行计算。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress