一、题目
已知函数 $f(x)$ $=$ $x^{2} \ln(1 – x)$,当 $n \geqslant 3$ 时,$f^{(n)}(0) =$ ($\quad$)
⟨A⟩ $-\dfrac{n!}{n – 2}$.
⟨B⟩ $\dfrac{n!}{n – 2}$.
⟨C⟩ $-\dfrac{(n – 2)!}{n}$.
⟨D⟩ $\dfrac{(n – 2)!}{n}$.
二、解析
解法 1:麦克劳林公式
根据 $\ln (1+x)$ 的麦克劳林公式,可知(橙色标注的部分是其第 $n$ 阶导对应的项):
$$
\ln(1 + x) = x – \frac{x^{2}}{2} + \frac{x^{3}}{3} – \cdots \textcolor{orange}{ + \frac{(-1)^{n-1}x^{n}}{n} } + o(x^{n})
$$
类推于是可知,$\ln(1 – x)$ 的麦克劳林公式为(橙色标注的部分是其第 $n$ 阶导对应的项):
$$
\begin{aligned}
\ln(1 – x) & = -x – \frac{x^{2}}{2} – \cdots \textcolor{orange}{ – \frac{x^{n}}{n} } + o(x^{n}) \\ \\
& = -\left(x + \frac{x^{2}}{2} + \cdots \textcolor{orange}{ + \frac{x^{n}}{n} } \right) + o(x^{n})
\end{aligned}
$$
进而可知,$f(x)$ 的麦克劳林公式为(橙色标注的部分是其第 $n+2$ 阶导对应的项,浅绿色标注的部分是其第 $n$ 阶导对应的项):
$$
\begin{aligned}
f(x) & = x^{2} \ln(1 – x) \\ \\
& = x^{2} \left[ -\left(x + \frac{x^{2}}{2} + \cdots \textcolor{orange}{ + \frac{x^{n}}{n} } \right) + o(x^{n}) \right] \\ \\
& = -\left(x^{3} + \frac{x^4}{2} + \cdots \textcolor{orange}{ + \frac{x^{n+2}}{n} } \right) + o(x^{n+2}) \\ \\
& = \textcolor{magenta}{-} \left(x^{3} + \frac{x^4}{2} + \cdots \textcolor{lightgreen}{+ \frac{x^{n}}{n-2}} + \cdots \textcolor{orange}{ + \frac{x^{n+2}}{n} } \right) + o(x^{n+2})
\end{aligned}
$$
于是,根据麦克劳林公式的定义可知:
$$
\begin{aligned}
& \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{magenta}{-} \textcolor{lightgreen}{+ \frac{x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \frac{- x^{n}}{n-2} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} = \frac{-1}{n-2} \\ \\
\leadsto \ & \textcolor{springgreen}{ f^{(n)}(0) = \frac{-n!}{n-2} }
\end{aligned}
$$
在演算选择题或者填空题的时候,为了提升计算速度,可以省略麦克劳林公式或者泰勒公式后面的高阶无穷小 $o \left( x^{n} \right)$ 或 $o \left( x^{n+2} \right)$,用 $\cdots$ 代替即可.
综上可知,本 题 应 选 A 
解法 2:泰勒公式
根据求和形式的泰勒公式可知:
$$
\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot x^{n}
$$
于是可知,$\ln (1 – x)$ 的泰勒展开式为:
$$
\begin{aligned}
\textcolor{springgreen}{ \ln(1-x) } & = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot (-x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{n-1}}}{n} \cdot \textcolor{orangered}{ (-1)^{n} } \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{n-1} \cdot (-1)^{n} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{2n-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{2n} \cdot (-1)^{-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ (-1)^{-1} } }{n} \cdot (x)^{n} \\ \\
& = \sum_{n=1}^{\infty} \frac{\textcolor{orangered}{ -1 } }{n} \cdot (x)^{n} \\ \\
& = \textcolor{springgreen}{ \sum_{n=1}^{\infty}\frac{-x^{n}}{n} }
\end{aligned}
$$
进而可知,$x^{2}\ln(1-x)$ 的泰勒展开式为:
$$
x^{2}\ln(1-x) = \sum_{n=1}^{\infty} \frac{-x^{n+2}}{n}
$$
由于题目说 $n$ 大于或等于 $3$, 且根据泰勒公式的定义可知,$x$ 的 $n$ 次方对应的就是函数的 $n$ 阶导(如果 $x$ 的次方数比 $n$ 大或者比 $n$ 小的话,求 $n$ 阶导之后都会变成 $0$, 从而消失),于是,我们通过将 $n$ 的取值开始点设置为 $3$, 来更改一下其求和表达式的形式,即:
$$
\textcolor{lightgreen}{ x^{2}\ln(1-x) } = \sum_{n=1}^{\infty} \frac{-x^{n+2}}{n} = \textcolor{lightgreen}{ \sum_{n=3}^{\infty}\frac{-x^{n}}{n-2} }
$$
于是可得:
$$
\begin{aligned}
& \sum_{n=3}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{lightgreen}{\sum_{n=3}^{\infty} \frac{-x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \textcolor{lightgreen}{\frac{-x^{n}}{n-2}} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} \cdot x^{n} = \frac{- x^{n}}{n-2} \\ \\
\leadsto \ & \frac{f^{(n)}(0)}{n!} = \frac{-1}{n-2} \\ \\
\leadsto \ & \textcolor{springgreen}{ f^{(n)}(0) = \frac{-n!}{n-2} }
\end{aligned}
$$
综上可知,本 题 应 选 A 
解法 3:莱布尼茨公式
由莱布尼茨公式可知:
$$
f^{(n)} = (uv)^{(n)} = \sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} v^{(k)}
$$
其中,$C_{n}^{k}$ $=$ $\frac{n!}{k! (n-k)!}$.
于是,对于本题,可得:
$$
\begin{aligned}
f^{(n)}(x) & = \sum_{k=0}^{n} C_{n}^{k} (x^{2})^{(k)} \cdot [\ln(1-x)]^{(n-k)} \\ \\
& = C_{n}^{0} \cdot x^{2} \cdot [\ln(1-x)]^{(n)} + C_{n}^{1} \cdot 2x \cdot [\ln(1-x)]^{(n-1)} \\
& + C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)} + \textcolor{gray}{ C_{n}^{3} \cdot \textcolor{orangered}{0} \cdot [\ln(1-x)]^{(n-3)} + \cdots } \\ \\
& = C_{n}^{0} \cdot \textcolor{orange}{ x^{2} } \cdot [\ln(1-x)]^{(n)} + C_{n}^{1} \cdot \textcolor{orange}{ 2x } \cdot [\ln(1-x)]^{(n-1)} + C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)}
\end{aligned}
$$
因此:
$$
\textcolor{lightgreen}{ f^{(n)}(0) } = C_{n}^{2} \cdot 2 \cdot [\ln(1-x)]^{(n-2)} = \textcolor{lightgreen}{ \frac{n!}{(n-2)!} \cdot [\ln(1-x)]^{(n-2)} }
$$
接下来,我们需要知道上面式子中 $[\ln(1-x)]^{(n-2)}$ 的求导表达式——
由「荒原之梦考研数学」的《公式类推的过程中一定要注意约束条件是否唯一》这篇文章可知:
$$
[\ln(1-x)]^{(n-2)} = -1 \cdot \frac{(n-3)!}{(1-x)^{n-2}}
$$
因此可知:
$$
\begin{aligned}
\textcolor{springgreen}{ f^{(n)}(0) } & = \frac{n!}{(n-2)!} \cdot [\ln(1-x)]^{(n-2)} \\ \\
& = \frac{n!}{(n-2)!} \cdot -1 \cdot \frac{(n-3)!}{(1-0)^{n-2}} \\ \\
& = \frac{n!}{(n-2)!} \cdot -1 \cdot (n-3)! \\ \\
& = -1 \cdot \frac{n! \cdot (n-3)!}{(n-2)!} \\ \\
& = -1 \cdot \frac{n! \cdot \textcolor{gray}{ (n-3)! \cdot (n-4)! \cdot (n-5)!}}{(n-2)! \cdot \textcolor{gray}{ (n-3)! \cdot (n-4)! \cdot (n-5)!}} \\ \\
& = \textcolor{springgreen}{ \frac{- n!}{(n-2)!} }
\end{aligned}
$$
综上可知,本 题 应 选 A 
解法 4:求导代入
首先,由题目可知:
$$
f(x)=x^{2} \ln (1-x)
$$
于是,其一阶导、二阶导和三阶导为:
$$
\begin{aligned}
f^{\prime}(x) & = 2 x \ln (1-x)-\frac{x^{2}}{1-x} \\ \\
f^{\prime \prime}(x) & = 2 \ln (1-x)-\frac{2 x}{1-x}-\frac{2 x-x^{2}}{(1-x)^{2}} \\ \\
f^{\prime \prime \prime}(x) & = -\frac{2}{1-x} – \frac{2}{(1-x)^{2}} – \frac{(2-2 x)(1-x)^{2}+2\left(2 x-x^{2}\right)(1-x)}{(1-x)^{4}}
\end{aligned}
$$
于是可知,当 $x = 0$ 时, $f^{(3)}(0)$ $=$ $f^{\prime \prime \prime}(0)$ $=$ $-2-2-2$ $=$ $\textcolor{white}{\colorbox{green}{ -6 }}$
同时,我们将 $n = 3$ 逐一代入题目所给的四个选项,可知:
⟨A⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $-\frac{1 \times 2 \times 3}{3-2}$ $=$ $\textcolor{white}{\colorbox{green}{ -6 }}$ ;
⟨B⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{3!}{1}$ $=$ $\textcolor{red}{ 6 }$ ;
⟨C⟩ 选项:$n=3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{-1!}{3}$ $=$ $\textcolor{red}{ \frac{-1}{3} }$
⟨D⟩ 选项:$你= 3$ $\textcolor{lightgreen}{ \leadsto }$ $\frac{1!}{3}$ $=$ $\textcolor{red}{ \frac{1}{3} }$
综上可知,本 题 应 选 A 