用定积分的定义计算数列和时怎么确定积分上下限?

一、题目题目 - 荒原之梦

$$
\begin{aligned}
I_{1} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2}} \\ \\
I_{2} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2} \cdots \textcolor{orange}{ \left(1 + \frac{2n}{n} \right)^{2} } } \\ \\
\end{aligned}
$$

二、解析 解析 - 荒原之梦

$I_{1}$

$$
\begin{aligned}
I_{1} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2} } \\ \\
& = \lim_{n \rightarrow \infty} \frac{2}{n} \ln \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \\ \\
\textcolor{yellow}{\Large{\boldsymbol{\star}}} & = 2 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\textcolor{lightgreen}{i = 1}}^{\textcolor{lightgreen}{n}} \ln \left(1 + \textcolor{lightgreen}{\frac{i}{n}} \right) \\ \\
\textcolor{yellow}{\Large{\boldsymbol{\star}}} & = 2 \int_{\textcolor{pink}{0}}^{\textcolor{pink}{1}} \ln(1 + x) \mathrm{~d} x \\ \\
& = 2 \int_{0}^{1} \ln(1 + x) \mathrm{~d}(x+1) \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{t = x + 1} \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{t \in (0, 1+1)} \\ \\
& = 2 \int_{1}^{2} \ln t \mathrm{~d} t \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{x = t} \\ \\
& = \textcolor{springgreen}{\boldsymbol{ 2 \int_{1}^{2} \ln x \mathrm{~d} x }}
\end{aligned}
$$

在上面的计算中,$2 \int_{\textcolor{pink}{0}}^{\textcolor{pink}{1}} \ln(1 + x) \mathrm{~d} x$ 中积分上下限的确定,是通过 $2 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\textcolor{lightgreen}{i = 1}}^{\textcolor{lightgreen}{n}} \ln \left(1 + \textcolor{lightgreen}{\frac{i}{n}} \right)$ 得到的:

由于 $\textcolor{lightgreen}{i}$ 的取值是从 $\textcolor{lightgreen}{1}$ 到 $\textcolor{lightgreen}{n}$, 因此,当 $n \rightarrow \infty$ 的时候,$\textcolor{lightgreen}{\frac{i}{n}}$ 的取值就是从 $\lim_{n \rightarrow \infty} \frac{1}{n} = \textcolor{pink}{0}$ 到 $\lim_{n \rightarrow \infty} \frac{n}{n} = \textcolor{pink}{1}$.

$I_{2}$

$$
\begin{aligned}
I_{1} & = \lim_{n \rightarrow \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n} \right)^{2} \left(1 + \frac{2}{n} \right)^{2} \cdots \left(1 + \frac{n}{n} \right)^{2} \cdots \textcolor{orange}{ \left(1 + \frac{2n}{n} \right)^{2} } } \\ \\
& = \lim_{n \rightarrow \infty} \frac{2}{n} \ln \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \cdots \textcolor{orange}{ \left(1 + \frac{2n}{n} \right) } \\ \\
\textcolor{yellow}{\Large{\boldsymbol{\star}}} & = 2 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\textcolor{lightgreen}{i = 1}}^{\textcolor{lightgreen}{2n}} \ln \left(1 + \textcolor{lightgreen}{\frac{i}{n}} \right) \\ \\
\textcolor{yellow}{\Large{\boldsymbol{\star}}} & = 2 \int_{\textcolor{pink}{0}}^{\textcolor{pink}{2}} \ln(1 + x) \mathrm{~d} x \\ \\
& = 2 \int_{0}^{2} \ln(1 + x) \mathrm{~d}(x+1) \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{t = x + 1} \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{t \in (0, 2+1)} \\ \\
& = 2 \int_{1}^{3} \ln t \mathrm{~d} t \\ \\
& \textcolor{lightgreen}{ \leadsto } \textcolor{gray}{x = t} \\ \\
& = \textcolor{springgreen}{\boldsymbol{ 2 \int_{1}^{3} \ln x \mathrm{~d} x }}
\end{aligned}
$$

在上面的计算中,$2 \int_{\textcolor{pink}{0}}^{\textcolor{pink}{2}} \ln(1 + x) \mathrm{~d} x$ 中积分上下限的确定,是通过 $2 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\textcolor{lightgreen}{i = 1}}^{\textcolor{lightgreen}{2n}} \ln \left(1 + \textcolor{lightgreen}{\frac{i}{n}} \right)$ 得到的:

由于 $\textcolor{lightgreen}{i}$ 的取值是从 $\textcolor{lightgreen}{1}$ 到 $\textcolor{lightgreen}{2n}$, 因此,当 $n \rightarrow \infty$ 的时候,$\textcolor{lightgreen}{\frac{i}{n}}$ 的取值就是从 $\lim_{n \rightarrow \infty} \frac{1}{n} = \textcolor{pink}{0}$ 到 $\lim_{n \rightarrow \infty} \frac{2n}{n} = \textcolor{pink}{2}$.


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress