变限积分求高阶导:分清谁是变量,能求出的先求出,能代入的先代入

一、题目题目 - 荒原之梦

已知 $x=x(t)$ 由方程 $\sin t$ $-$ $\int_{1}^{x-t} \mathrm{e}^{-u^{2}} \mathrm{~d} u$ $=$ $0$ 所确定, 则 $\left.\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}\right|_{t=0}$ $=$ $?$

难度评级:

继续阅读“变限积分求高阶导:分清谁是变量,能求出的先求出,能代入的先代入”

构造函数的技巧:什么样的式子求导可能会产生 1 阶导和 0 阶导?

一、题目题目 - 荒原之梦

已知 $f(x)$ 可导, $f(0)=2$, 且 $f^{\prime}(x)$ $<$ $2 f(x)$, 则下列结论正确的是哪个 ( $\quad$ )

A. $f(-1)>2$

C. $f(1)>2 \mathrm{e}^{2}$

B. $f(-1)<\frac{2}{\mathrm{e}^{2}}$

D. $f(1)<2 \mathrm{e}^{2}$

难度评级:

继续阅读“构造函数的技巧:什么样的式子求导可能会产生 1 阶导和 0 阶导?”

式子复杂不要怕,先分析其“型”,再确定求解之“法”

一、题目题目 - 荒原之梦

已知:

$$
f(x) = \lim_{t \rightarrow x} \sin x \cdot \left( \frac{t}{x} \right)^{\frac{t^{3}}{t – x}}
$$

则:

$$
\lim_{x \rightarrow 0} \frac{f(x) – x}{x^{3}} = ?
$$

难度评级:

继续阅读“式子复杂不要怕,先分析其“型”,再确定求解之“法””

无穷小与有理化、积分、中值定理相结合的一道题目

一、题目题目 - 荒原之梦

当 $x \rightarrow 0$ 时,无穷小量:

$$
\begin{aligned}
& \alpha = \sqrt{1 + x \cos x} – \sqrt{1 + \sin x} \\
& \beta = \int _{0}^{e^{2x} – 1} \frac{\sin ^{2} t}{t} \mathrm{~d} t \\
& \gamma = \cos (\tan x) – \cos x
\end{aligned}
$$

的阶数由高到低次序为 ($\quad$)

难度评级:

继续阅读“无穷小与有理化、积分、中值定理相结合的一道题目”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress