三元函数求双条件极值:拉格朗日函数的构造(B013)

问题

根据拉格朗日乘数法,若要求函数 $u$ $=$ $f(x, y, z)$ 在 $\varphi_{1}(x, y, z)$ $=$ $0$ 和 $\varphi_{2}(x, y, z)$ $=$ $0$ 两个条件约束下的极值,如何构造拉格朗日函数 $F(x, y, z)$ ?

选项

[A].   $F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\lambda_{1}$ $\varphi_{1}(x, y, z)$ $+$ $\lambda_{2}$ $\varphi_{2}(x, y, z)$

[B].   $F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\frac{1}{\lambda_{1}}$ $\varphi_{1}(x, y, z)$ $+$ $\frac{1}{\lambda_{2}}$ $\varphi_{2}(x, y, z)$

[C].   $F(x, y, z)$ $=$ $\lambda$ $f(x, y, z)$ $+$ $\lambda_{1}$ $\varphi_{1}(x, y, z)$ $+$ $\lambda_{2}$ $\varphi_{2}(x, y, z)$

[D].   $F(x, y, z)$ $=$ $f(x, y, z)$ $-$ $\lambda_{1}$ $\varphi_{1}(x, y, z)$ $-$ $\lambda_{2}$ $\varphi_{2}(x, y, z)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\lambda_{1}$ $\varphi_{1}(x, y, z)$ $+$ $\lambda_{2}$ $\varphi_{2}(x, y, z)$

三元函数求单条件极值:拉格朗日函数的构造(B013)

问题

根据拉格朗日乘数法,若要求函数 $u$ $=$ $f(x, y, z)$ 在 $\varphi(x, y, z)$ $=$ $0$ 条件约束下的极值,如何构造拉格朗日函数 $F(x, y, z)$ ?

选项

[A].   $F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\varphi(x, y, z)$

[B].   $F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\lambda$ $\varphi(x, y, z)$

[C].   $F(x, y, z)$ $=$ $\lambda$ $f(x, y, z)$ $+$ $\varphi(x, y, z)$

[D].   $F(x, y, z)$ $=$ $f(x, y, z)$ $-$ $\lambda$ $\varphi(x, y, z)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$F(x, y, z)$ $=$ $f(x, y, z)$ $+$ $\lambda$ $\varphi(x, y, z)$

二元函数求单条件极值:拉格朗日函数的构造(B013)

问题

根据拉格朗日乘数法,若要求函数 $z$ $=$ $f(x, y)$ 在 $\varphi(x, y)$ $=$ $0$ 条件约束下的极值,如何构造拉格朗日函数 $F(x, y)$ ?

选项

[A].   $F(x, y)$ $=$ $f(x, y)$ $-$ $\lambda$ $\varphi(x, y)$

[B].   $F(x, y)$ $=$ $f(x, y)$ $+$ $\lambda$ $\varphi(x, y)$

[C].   $F(x, y)$ $=$ $f(x, y)$ $+$ $\frac{1}{\lambda}$ $\varphi(x, y)$

[D].   $F(x, y)$ $=$ $\lambda$ $f(x, y)$ $+$ $\varphi(x, y)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$F(x, y)$ $=$ $f(x, y)$ $+$ $\lambda$ $\varphi(x, y)$

极值存在的充分条件:判别公式中的 $A$, $B$, $C$ 都是多少?(B013)

问题

若已知函数 $z$ $=$ $f(x, y)$ 在点 $\left(x_{0}, y_{0} \right)$ 的某邻域内有连续的二阶偏导数,且 $f_{x}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$, $f_{y}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$; 则极值判别公式 $AC$ $-$ $B^{2}$ 中的 $A$, $B$ 和 $C$ 各等于多少?

选项

[A].   $\begin{cases} & A = f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right) \\ & B= f_{x y}^{\prime \prime}\left(x_{0} \right., \left.y_{0} \right)\\ & C = f_{y y}^{\prime \prime}\left(x_{0}, y_{0} \right) \end{cases}$

[B].   $\begin{cases} & A = f_{x}^{\prime}\left(x_{0}, y_{0}\right) \\ & B= f_{x y}^{\prime \prime}\left(x_{0} \right., \left.y_{0} \right)\\ & C = f_{y}^{\prime}\left(x_{0}, y_{0} \right) \end{cases}$

[C].   $\begin{cases} & A = f_{y x}^{\prime \prime}\left(x_{0}, y_{0}\right) \\ & B= f_{x y}^{\prime \prime}\left(x_{0} \right., \left.y_{0} \right)\\ & C = f_{y y}^{\prime \prime}\left(x_{0}, y_{0} \right) \end{cases}$

[D].   $\begin{cases} & A = f_{y y}^{\prime \prime}\left(x_{0}, y_{0}\right) \\ & B= f_{x y}^{\prime \prime}\left(x_{0} \right., \left.y_{0} \right)\\ & C = f_{x x}^{\prime \prime}\left(x_{0}, y_{0} \right) \end{cases}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\begin{cases} & A = f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right) \\ & B= f_{x y}^{\prime \prime}\left(x_{0} \right., \left.y_{0} \right)\\ & C = f_{y y}^{\prime \prime}\left(x_{0}, y_{0} \right) \end{cases}$

极值存在的充分条件:判断是极大值点还是极小值点(B013)

问题

若已知函数 $z$ $=$ $f(x, y)$ 在点 $\left(x_{0}, y_{0} \right)$ 的某邻域内有连续的二阶偏导数,且 $f_{x}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$, $f_{y}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$; $A$ $=$ $f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right)$, $B$ $=$ $f_{x y}^{\prime \prime}\left(x_{0} \right.$, $\left.y_{0} \right)$, $C$ $=$ $f_{y y}^{\prime \prime}\left(x_{0}, y_{0} \right)$.

则以下哪个选项可以说明点 $\left(x_{0}, y_{0} \right)$ 为函数 $z$ $=$ $f(x, y)$ 的一个极值大点或极小值点?

选项

[A].   $A C$ $-$ $B^{2}$ $>$ $0$ $\Rightarrow$ $\begin{cases} & A>0 \Rightarrow 极小值点 \\ & A<0 \Rightarrow 极大值点 \end{cases}$

[B].   $A C$ $-$ $B^{2}$ $<$ $0$ $\Rightarrow$ $\begin{cases} & A>0 \Rightarrow 极小值点 \\ & A<0 \Rightarrow 极大值点 \end{cases}$

[C].   $A C$ $-$ $B^{2}$ $>$ $0$ $\Rightarrow$ $\begin{cases} & A>1 \Rightarrow 极小值点 \\ & A<1 \Rightarrow 极大值点 \end{cases}$

[D].   $A C$ $-$ $B^{2}$ $>$ $0$ $\Rightarrow$ $\begin{cases} & A<0 \Rightarrow 极小值点 \\ & A>0 \Rightarrow 极大值点 \end{cases}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$A C$ $-$ $B^{2}$ $>$ $0$ $\Rightarrow$ $\begin{cases} & A>0 \Rightarrow 极小值点 \\ & A<0 \Rightarrow 极大值点 \end{cases}$

极值存在的充分条件:判断是否为极值点(B013)

问题

若已知函数 $z$ $=$ $f(x, y)$ 在点 $\left(x_{0}, y_{0} \right)$ 的某邻域内有连续的二阶偏导数,且 $f_{x}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$, $f_{y}^{\prime}\left(x_{0}, y_{0} \right)$ $=$ $0$; $A$ $=$ $f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right)$, $B$ $=$ $f_{x y}^{\prime \prime}\left(x_{0} \right.$, $\left.y_{0} \right)$, $C$ $=$ $f_{y y}^{\prime \prime}\left(x_{0}, y_{0} \right)$.

则以下哪个选项可以说明点 $\left(x_{0}, y_{0} \right)$ 为函数 $z$ $=$ $f(x, y)$ 的一个极值点?

选项

[A].   $B C$ $-$ $A^{2}$ $<$ $0$

[B].   $A C$ $-$ $B^{2}$ $<$ $0$

[C].   $A B$ $-$ $C^{2}$ $>$ $0$

[D].   $A C$ $-$ $B^{2}$ $>$ $0$

[E].   $A B$ $-$ $C^{2}$ $=$ $0$

[F].   $A C$ $-$ $B^{2}$ $=$ $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$A C$ $-$ $B^{2}$ $>$ $0$ $\Rightarrow$ 点 $\left(x_{0}, y_{0} \right)$ 是极值点.

$A C$ $-$ $B^{2}$ $<$ $0$ $\Rightarrow$ 点 $\left(x_{0}, y_{0} \right)$ 不是极值点.

$A C$ $-$ $B^{2}$ $=$ $0$ $\Rightarrow$ 不确定点 $\left(x_{0}, y_{0} \right)$ 是否是极值点.

极值存在的必要条件(B013)

问题

设 $z=f(x, y)$ 在点 $\left(x_{0}, y_{0}\right)$ 的一阶偏导数存在, 且 $\left(x_{0}, y_{0}\right)$ 是 $z=$ $f(x, y)$ 的极值点, 则可以推出以下哪个选项所示的结论?

选项

[A].   $\left.\frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$ $\neq$ $\left.\frac{\partial z}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$

[B].   $\left.\frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $1$, $\left.\frac{\partial z}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $1$

[C].   $\left.\frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $0$, $\left.\frac{\partial z}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $0$

[D].   $\left.\frac{\partial z}{\partial x}\right|_{\left(x, y\right)}$ $=$ $0$, $\left.\frac{\partial z}{\partial y}\right|_{\left(x, y \right)}$ $=$ $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left.\frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $0$, $\left.\frac{\partial z}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $0$

多元函数的极值(B013)

问题

以下哪个选项可以说明点 $(x_{0}, y_{0})$ 是二元函数 $z$ $=$ $f(x, y)$ 的极大值点(或极小值点)?

选项

[A].   在点 $(x_{0}, y_{0})$ 的邻域内有一个异于点 $(x_{0}, y_{0})$ 的点 $(x, y)$ 使得 $f(x, y) < f(x_{0}, y_{0})$(或 $f(x, y)$ $>$ $f(x_{0}, y_{0})$)成立

[B].   在点 $(x_{0}, y_{0})$ 的邻域内有多个异于点 $(x_{0}, y_{0})$ 的点 $(x, y)$ 使得 $f(x, y) < f(x_{0}, y_{0})$(或 $f(x, y)$ $>$ $f(x_{0}, y_{0})$)成立

[C].   在点 $(x_{0}, y_{0})$ 的邻域内有两个异于点 $(x_{0}, y_{0})$ 的点 $(x, y)$ 使得 $f(x, y) < f(x_{0}, y_{0})$(或 $f(x, y)$ $>$ $f(x_{0}, y_{0})$)成立

[D].   在点 $(x_{0}, y_{0})$ 的邻域内任意一个异于点 $(x_{0}, y_{0})$ 的点 $(x, y)$, 都使得 $f(x, y) < f(x_{0}, y_{0})$(或 $f(x, y)$ $>$ $f(x_{0}, y_{0})$)成立


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

在点 $(x_{0}, y_{0})$ 的邻域内任意一个异于点 $(x_{0}, y_{0})$ 的点 $(x, y)$, 都使得 $f(x, y) < f(x_{0}, y_{0})$(或 $f(x, y)$ $>$ $f(x_{0}, y_{0})$)成立 $\Rightarrow$ $f(x_{0}, y_{0})$ 是函数 $z$ $=$ $f(x, y)$ 的一个极大值(或极小值)

三元隐函数的复合函数求导法则(B012)

问题

设由方程组 $\left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array}\right.$ 确定的隐函数为 $y$ $=$ $y(x)$ 与 $z$ $=$ $z(x)$, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}$ 和 $\frac{\mathrm{d} z}{\mathrm{~d} x}$ 可以通过解以下哪个线性方程组求出?

选项

[A].   $\left\{\begin{array}{l} F_{z}^{\prime}+F_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{z}^{\prime}+G_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$

[B].   $\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}+F_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \end{array}\right.$

[C].   $\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$

[D].   $\left\{\begin{array}{l} F_{x}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{x}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$

三元复合函数求导法则(B012)

问题

已知函数 $F(x, y, z)$ $=$ $0$, 若 $F_{z}^{\prime}$ $\neq$ $0$, 则 $\frac{\partial z}{\partial x}$ $=$ $?$, $\frac{\partial z}{\partial y}$ $=$ $?$

选项

[A].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{z}^{\prime}(x, y, z)}{F_{x}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{z}^{\prime}(x, y, z)}{F_{y}^{\prime}(x, y, z)}$

[B].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}(x, y, z)}$

[C].   $\frac{\partial z}{\partial x}$ $=$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$

[D].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$

二元复合函数求导法则(B012)

问题

已知函数 $F(x, y)$ $=$ $0$, 若 $F_y^{\prime}$ $\neq$ $0$, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $?$

选项

[A].   $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $\frac{F_{x}^{\prime}(x, y)}{F_{y}^{\prime}(x, y)}$

[B].   $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $-\frac{F_{x}^{\prime}(x, y)}{F_{y}^{\prime}(x, y)}$

[C].   $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $\frac{F_{y}^{\prime}(x, y)}{F_{x}^{\prime}(x, y)}$

[D].   $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $-\frac{F_{y}^{\prime}(x, y)}{F_{x}^{\prime}(x, y)}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{\mathrm{d} y}{\mathrm{~d} x}=$ $-\frac{F_{x}^{\prime}(x, y)}{F_{y}^{\prime}(x, y)}$

二元三重复合函数求导法则(B012)

问题

设函数 $z$ $=$ $f(x, u, v)$, $u$ $=$ $\varphi(x, y)$, $v$ $=$ $\psi(x, y)$, 则 $\frac{\partial z}{\partial x}$ $=$ $?$, $\frac{\partial z}{\partial y}$ $=$ $?$

选项

[A].   $\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\mathrm{d} f}{\mathrm{d} x}+\frac{\mathrm{d} f}{\mathrm{d} u} \cdot \frac{\partial u}{\partial x}+\frac{\mathrm{d} f}{\mathrm{d} v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\mathrm{d} f}{\mathrm{d} u} \cdot \frac{\partial u}{\partial y}+\frac{\mathrm{d} f}{\mathrm{d} v} \cdot \frac{\partial v}{\partial y} \end{array}\right.$

[B].   $\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}\right.$

[C].   $\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}\right.$

[D].   $\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}\right.$

二元二重复合函数求导法则(B012)

问题

设函数 $z$ $=$ $f(u, v)$, $u$ $=$ $\varphi(x, y)$, $v$ $=$ $\psi(x, y)$, 则 $\frac{\partial z}{\partial x}$ $=$ $?$, $\frac{\partial z}{\partial y}$ $=$ $?$

选项

[A].   $\left\{\begin{array}{l} \frac{\partial z} {\partial x}=\frac{\mathrm{d} z}{\mathrm{d} u} \cdot \frac{\mathrm{d} u}{\mathrm{d} x}+\frac{\mathrm{d} z}{\mathrm{d} v} \cdot \frac{\mathrm{d} v}{\mathrm{d} x}, \\ \frac{\partial z}{\partial y}=\frac{\mathrm{d} z}{\mathrm{d} u} \cdot \frac{\mathrm{d} u}{\mathrm{d} y}+\frac{\mathrm{d} z}{\mathrm{d} v} \cdot \frac{\mathrm{d} v}{\mathrm{d} y} . \end{array}\right.$

[B].   $\left\{\begin{array}{l} \frac{\partial z} {\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} . \end{array}\right.$

[C].   $\left\{\begin{array}{l} \frac{\partial z} {\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\mathrm{d} u}{\mathrm{d} x}+\frac{\partial z}{\partial v} \cdot \frac{\mathrm{d} v}{\mathrm{d} x}, \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\mathrm{d} u}{\mathrm{d} y}+\frac{\partial z}{\partial v} \cdot \frac{\mathrm{d} v}{\mathrm{d} y} . \end{array}\right.$

[D].   $\left\{\begin{array}{l} \frac{\partial z} {\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} . \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{array}{l} \frac{\partial z} {\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} . \end{array}\right.$

一元二重复合函数求导法则(B012)

问题

设函数 $z$ $=$ $f(u, v)$, $u$ $=$ $\varphi(x)$, $v$ $=$ $\psi(x)$, 则 $\frac{\mathrm{d} z}{\mathrm{d} x}$ $=$ $?$

选项

[A].   $\frac{\mathrm{d} z}{\mathrm{~d} x}$ $=$ $\frac{\partial z}{\partial u}$ $+$ $\frac{\partial z}{\partial v}$

[B].   $\frac{\mathrm{d} z}{\mathrm{~d} x}$ $=$ $\frac{\partial z}{\partial u}$ $\cdot$ $\frac{\mathrm{d} u}{\mathrm{d} x}$ $\cdot$ $\frac{\partial z}{\partial v}$ $\cdot$ $\frac{\mathrm{d} v}{\mathrm{d} x}$

[C].   $\frac{\mathrm{d} z}{\mathrm{~d} x}$ $=$ $\frac{\partial z}{\partial u}$ $\cdot$ $\frac{\mathrm{d} u}{\mathrm{d} x}$ $+$ $\frac{\partial z}{\partial v}$ $\cdot$ $\frac{\mathrm{d} v}{\mathrm{d} x}$

[D].   $\frac{\mathrm{d} z}{\mathrm{~d} x}$ $=$ $\frac{\partial z}{\partial u}$ $\cdot$ $\frac{\partial u}{\partial x}$ $+$ $\frac{\partial z}{\partial v}$ $\cdot$ $\frac{\partial v}{\partial x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{\mathrm{d} z}{\mathrm{~d} x}$ $=$ $\frac{\partial z}{\partial u}$ $\cdot$ $\frac{\mathrm{d} u}{\mathrm{d} x}$ $+$ $\frac{\partial z}{\partial v}$ $\cdot$ $\frac{\mathrm{d} v}{\mathrm{d} x}$

偏导数存在与可微之间的关系(B012)

问题

已知,若函数 $z$ $=$ $f(x, y)$ 的偏导数存在,则这两个偏导数分别记为 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$, 则,以下选项中,正确的是哪些?(多选)

选项

[A].   偏导数存在且连续 $\Rightarrow$ 一定可微

[B].   可微 $\Rightarrow$ 偏导数不一定存在

[C].   偏导数存在且连续 $\Rightarrow$ 不一定可微

[D].   偏导数存在 $\Rightarrow$ 不一定可微

[E].   偏导数存在 $\Rightarrow$ 一定可微

[F].   可微 $\Rightarrow$ 偏导数一定存在


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

函数 $z$ $=$ $f(x, y)$ 在点 $(x, y)$ 处可微 $\Rightarrow$ 偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 必存在.

偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 存在 $\Rightarrow$ 函数 $z$ $=$ $f(x, y)$ 在点 $(x, y)$ 处不一定可微.

偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 在点 $(x, y)$ 的某邻域内存在且连续 $\Rightarrow$ 函数 $z$ $=$ $f(x, y)$ 在点 $(x, y)$ 处可微.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress