问题
若已知空间曲线 $\Gamma$ 的参数方程为 $\left\{\begin{array}{l}x=x(t), \\ y=y(t) \\ z=z(t)\end{array}\right.$, 则曲线 $\Gamma$ 在点 $(x_{0}, y_{0}, z_{0})$(对应参数 $t$ $=$ $t_{0}$)处的法平面方程为多少?选项
[A]. $x^{\prime}\left(t_{0} \right)$ $\left(x+x_{0} \right)$ $-$ $y^{\prime}\left(t_{0} \right)$ $\left(y+y_{0} \right)$ $-$ $z^{\prime}\left(t_{0} \right)$ $\left(z+z_{0} \right)$ $=$ $0$[B]. $x^{\prime}\left(t_{0} \right)$ $\left(x-x_{0} \right)$ $+$ $y^{\prime}\left(t_{0} \right)$ $\left(y-y_{0} \right)$ $+$ $z^{\prime}\left(t_{0} \right)$ $\left(z-z_{0} \right)$ $=$ $0$
[C]. $x^{\prime}\left(t_{0} \right)$ $\left(x-x_{0} \right)$ $\times$ $y^{\prime}\left(t_{0} \right)$ $\left(y-y_{0} \right)$ $\times$ $z^{\prime}\left(t_{0} \right)$ $\left(z-z_{0} \right)$ $=$ $1$
[D]. $x \left(t_{0} \right)$ $\left(x-x_{0} \right)$ $+$ $y \left(t_{0} \right)$ $\left(y-y_{0} \right)$ $+$ $z \left(t_{0} \right)$ $\left(z-z_{0} \right)$ $=$ $0$