二元函数求单条件极值:拉格朗日函数的使用(B013)

问题

若要求函数 $z$ $=$ $f(x, y)$ 在 $\varphi(x, y)$ $=$ $0$ 条件下的极值,且已经构造出了如下的拉格朗日函数:

$F(x, y)$ $=$ $f(x, y)$ $+$ $\lambda$ $\varphi(x, y)$

则,根据拉格朗日乘数法,还需要构造以下哪个选项中的方程组并计算才可能得出与极值对应的驻点 $(x_{0}, y_{0})$ ?

选项

[A].   $\left\{\begin{array}{l}f_{x}^{\prime}(x, y)+\lambda \varphi_{x y}^{\prime \prime}(x, y)=0, \\ f_{y}^{\prime}(x, y)+\lambda \varphi_{y x}^{\prime \prime}(x, y)=1, \\ \varphi(x, y)=0.\end{array}\right.$

[B].   $\left\{\begin{array}{l}f_{x}^{\prime}(x, y)-\lambda \varphi_{x}^{\prime}(x, y)=0, \\ f_{y}^{\prime}(x, y)-\lambda \varphi_{y}^{\prime}(x, y)=0, \\ \varphi(x, y)=1. \end{array}\right.$

[C].   $\left\{\begin{array}{l}f(x, y)+\lambda \varphi_{x}^{\prime}(x, y)=0, \\ f(x, y)+\lambda \varphi_{y}^{\prime}(x, y)=0, \\ \varphi(x, y)=0. \end{array}\right.$

[D].   $\left\{\begin{array}{l}f_{x}^{\prime}(x, y)+\lambda \varphi_{x}^{\prime}(x, y)=0, \\ f_{y}^{\prime}(x, y)+\lambda \varphi_{y}^{\prime}(x, y)=0, \\ \varphi(x, y)=0. \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{array}{l}f_{x}^{\prime}(x, y)+\lambda \varphi_{x}^{\prime}(x, y)=0, \\ f_{y}^{\prime}(x, y)+\lambda \varphi_{y}^{\prime}(x, y)=0, \\ \varphi(x, y)=0. \end{array}\right.$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress