形成空间曲线的空间曲面的法向量:基于一般式方程(B013)

问题

若已知空间曲线 $\Gamma$ 的一般式方程为 $\left\{\begin{array}{l} F(x, y, z)=0, \\ G(x, y, z)=0 \end{array}\right.$, 则在曲线 $\Gamma$ 上的点 $(x_{0}, y_{0}, z_{0})$ 处,曲面 $F(x, y, z)$ $=$ $0$ 和 $G(x, y, z)$ $=$ $0$ 的两个法向量 $n_{1}$ 和 $n_{2}$ 分别是多少?

选项

[A].   $\boldsymbol{n}_{1}$ $=$ $($ $F_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$
$\boldsymbol{n}_{2}$ $=$ $($ $G_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$


[B].   $\boldsymbol{n}_{1}$ $=$ $($ $F_{x x}^{\prime \prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{y y}^{\prime \prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{z z}^{\prime \prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$
$\boldsymbol{n}_{2}$ $=$ $($ $G_{x x}^{\prime \prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{y y}^{\prime \prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{z z}^{\prime \prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$


[C].   $\boldsymbol{n}_{1}$ $=$ $($ $- F_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $- F_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $- F_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$
$\boldsymbol{n}_{2}$ $=$ $($ $- G_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $- G_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $- G_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$


[D].   $\boldsymbol{n}_{1}$ $=$ $($ $F_{x}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{y}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{z}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$
$\boldsymbol{n}_{2}$ $=$ $($ $G_{x}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{y}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{z}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$



上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\boldsymbol{n}_{1}$ $=$ $($ $F_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $F_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$
$\boldsymbol{n}_{2}$ $=$ $($ $G_{x}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{y}^{\prime}$ $($ $x_{0}, y_{0}, z_{0}$ $)$, $G_{z}^{\prime}$ $(x_{0}, y_{0}, z_{0}$ $)$ $)$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress