问题
若已知空间曲线 $\Gamma$ 的参数方程为 $\left\{\begin{array}{l}x=x(t), \\ y=y(t) \\ z=z(t)\end{array}\right.$, 则曲线 $\Gamma$ 在点 $(x_{0}, y_{0}, z_{0})$(对应参数 $t$ $=$ $t_{0}$)处的切向量为多少?选项
[A]. $\tau$ $=$ $\left\{x \left(t_{0} \right), y \left(t_{0}\right), z \left(t_{0}\right)\right\}$[B]. $\tau$ $=$ $\left\{x^{\prime}\left(t_{0} \right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right\}$
[C]. $\tau$ $=$ $\left\{x^{\prime \prime}\left(t_{0} \right), y^{\prime \prime}\left(t_{0}\right), z^{\prime \prime}\left(t_{0}\right)\right\}$
[D]. $\tau$ $=$ $-$ $\left\{x^{\prime}\left(t_{0} \right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right\}$