三元空间曲面上某点处的切平面方程(B013)

问题

设曲面 $\Sigma$ 的方程为 $z$ $=$ $f(x, y, z)$, 则在 $\Sigma$ 上的点 $\left(x_{0}, y_{0}, z_{0}\right)$ 处的切平面方程是多少?

选项

[A].   $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)$ $+$ $\left.F_{y}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right)$ $+$ $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(z-z_{0}\right)$ $=$ $1$

[B].   $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)$ $+$ $\left.F_{y}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right)$ $+$ $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(z-z_{0}\right)$ $=$ $0$

[C].   $\frac{x-x_{0}}{\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}}$ $=$ $\frac{y-y_{0}}{\left.F_{y}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}}$ $=$ $\frac{z-z_{0}}{\left.F_{z}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}}$

[D].   $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)$ $-$ $\left.F_{y}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right)$ $-$ $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(z-z_{0}\right)$ $=$ $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)$ $+$ $\left.F_{y}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right)$ $+$ $\left.F_{x}^{\prime}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}\left(z-z_{0}\right)$ $=$ $0$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress