空间曲线的法平面方程:基于一般式方程(B013) 问题若已知空间曲线 Γ 的一般式方程为 {F(x,y,z)=0,G(x,y,z)=0, 则在曲线 Γ 上的点 (x0,y0,z0) 处,曲面 F(x,y,z) = 0 和 G(x,y,z) = 0 的两个法向量 n1 和 n2 分别为: n1 = (Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0))n1 = (Gx′(x0,y0,z0),Gy′(x0,y0,z0),Gz′(x0,y0,z0)) 该点处的切向量为:τ = n1×n2 若记切向量 τ = (A,B,C),则曲线 Γ 在点 (x0,y0,z0) 处的法平面方程是多少?选项[A]. x−x0A = y−y0B = z−z0C[B]. A (x−x0) − B (y−y0) − C (z−z0) = 0[C]. A (x+x0) + B (y+y0) + C (z+z0) = 0[D]. A (x−x0) + B (y−y0) + C (z−z0) = 0 答 案 A (x−x0) + B (y−y0) + C (z−z0) = 0 相关文章: 空间曲线的切向量:基于一般式方程(B013) 形成空间曲线的空间曲面的法向量:基于一般式方程(B013) 空间曲线的切线方程:基于一般式方程(B013) 三元隐函数的复合函数求导法则(B012) 空间曲线的切向量:基于参数方程(B013) 三元函数求单条件极值:拉格朗日函数的使用(B013) 空间曲线的法平面方程:基于参数方程(B013) 二元函数求单条件极值:拉格朗日函数的使用(B013) 极值存在的充分条件:判别公式中的 A, B, C 都是多少?(B013) 空间曲线的切线方程:基于参数方程(B013) 空间曲线在 xOy 平面上的投影曲线的方程(B011) 空间曲线在 yOz 平面上的投影曲线的方程(B011) 空间曲线在 zOx 平面上的投影曲线的方程(B011) 三元复合函数求导法则(B012) 二阶混合偏导与次序无关定理(B012) 向量的混合积(B008) 定积分的广义分部积分公式(B007) 变上限积分定义的第二个推论(B007) 极值存在的充分条件:判断是否为极值点(B013) 极值存在的充分条件:判断是极大值点还是极小值点(B013) 二元三重复合函数求导法则(B012) 二元二重复合函数求导法则(B012) ∫ uv′ d x 的分部积分公式(02-B006) 二元复合函数求导法则(B012) 向量 a→ 相对于 z 轴的方向余弦:cosγ(B008)