二元函数方向导数的计算(B013)

问题

若已知函数 $f(x, y)$ 在点 $\left(x_{0}, y_{0}\right)$ 处可微, 且 $(\cos \alpha, \cos \beta)$ 是 $\boldsymbol{l}$ 方向的方向余弦.
那么,该函数在该点沿任何方向 $\boldsymbol{l}$ 的方向导数 $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ 都存在,则 $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $?$

选项

[A].   $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \sin \alpha$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \sin \beta$

[B].   $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \cos \alpha$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \cos \beta$

[C].   $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \cos \alpha$ $-$ $f_{y}\left(x_{0}, y_{0}\right) \cos \beta$

[D].   $\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \cos \beta$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \cos \alpha$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left.\frac{\partial f}{\partial \boldsymbol{l}}\right|_{\left(x_{0}, y_{0}\right)}$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \cos \alpha$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \cos \beta$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress