峰说峰语:考研数学考的是“智商”还是“积累”?

峰说峰语:考研数学考的是“智商”还是“积累”?| 荒原之梦考研数学 | 图片来自:pixabay.com, ID: 6570815

一、前言 前言 - 荒原之梦

在我们固有的观念中,数学是一门只适合有数学天赋的人学习的科目,在我们过往的学习生活中,也不乏遇到在数学的学习上看上去并没有下多少功夫,却可以常常取得高分的人。

假设人的智商确实存在差异,那么,在考研数学的学习中,究竟是“智商”重要?还是“积累”重要?如果是积累重要,那么,我们该怎么进行积累,才有利于提升数学能力呢?

在本文中,「荒原之梦考研数学」将为同学们做一个详细的解答。

继续阅读“峰说峰语:考研数学考的是“智商”还是“积累”?”

图解随机变量和样本观测值的联系与区别

一、前言 前言 - 荒原之梦

在概率统计中,随机变量和样本观测值(或“样本的特征值”)是两个相关但不相同的概念。但是,在学习的过程中,随机变量和样本的观测值一般都是用数字进行表示的,此时,稍不注意就可能忽略了其中存在的区别。

所以,在本文中,「荒原之梦考研数学」将使用图解的方式为同学们讲解清楚这两个概念之家的联系和区别。

继续阅读“图解随机变量和样本观测值的联系与区别”

对含有 $\sin$ 或 $\cos$ 的被积函数做分部积分一般要做两次

一、题目题目 - 荒原之梦

$$
\begin{aligned}
I_{1} & = \int_{0}^{\infty} \mathrm{e}^{- \alpha x} \cdot \textcolor{lightgreen}{\cos} \left( \beta x \right) \mathrm{~d} x = ? \\ \\
I_{2} & = \int_{0}^{\infty} \mathrm{e}^{- \alpha x} \cdot \textcolor{pink}{\sin} \left( \beta x \right) \mathrm{~d} x = ?
\end{aligned}
$$

其中,$\alpha > 0$.

继续阅读“对含有 $\sin$ 或 $\cos$ 的被积函数做分部积分一般要做两次”

峰说峰语:没有“锋”就不会有“芒”

峰图 | 经验分布函数的图形化理解

一、前言 前言 - 荒原之梦

是考研数学大纲中的一个“冷门”知识点,考察频次较低。但是,对于考研的学子们来说,再“冷门”的知识点,我们都要认真学习。

在本文中,「荒原之梦考研数学」将结合离散型随机变量的分布函数和直观形象的示意图,让同学们快速理解什么是“ ”。

继续阅读“峰图 | 经验分布函数的图形化理解”

峰图 | 直观地理解数列及数列的基本性质

一、前言 前言 - 荒原之梦

在高等数学中,我们一般会用 “$\{ x_{n} \}$” 或者 “$\{ y_{n} \}$” 表示数列,数列和函数有很多异同点,要想深入地理解数列,首先就要明白什么是数列,以及数列的敛散性。

在本文中,「荒原之梦考研数学」将使用通俗易懂的解释,为同学们讲明白数列的那些事。

继续阅读“峰图 | 直观地理解数列及数列的基本性质”

荒原之梦:写在二零二五年的第一天

荒原之梦:写在二零二四年的最后一天

构成卡方分布的正态分布必须是标准正态分布且系数为 1

一、题目题目 - 荒原之梦

已知 $\xi_{1}$, $\xi_{2}$, $\cdots$, $\xi_{8}$ 是来自标准正态分布的总体 $\xi \sim N(0, 1)$ 的容量为 $8$ 的简单随机样本,而 $\eta$ $=$ $\left( \xi_{1} + \xi_{2} + \xi_{3} + \xi_{4} \right)^{2}$ $+$ $\left( \xi_{5} + \xi_{6} + \xi_{7} + \xi_{8} \right)^{2}$.

试求常数 $k$, 使得随机变量 $k \eta$ 服从 $\chi^{2}$ 分布,同时指出 $\chi^{2}$ 分布的自由度。

难度评级:

继续阅读“构成卡方分布的正态分布必须是标准正态分布且系数为 1”

扩展的极限“抓大去小”定理

一、前言 前言 - 荒原之梦

在「荒原之梦考研数学」的文章《取大头:分子或分母中的加减法所连接的部分可以使用“取大头”算法》中,我们主要讨论了当 $x \rightarrow +\infty$, 且 $x^{n}$ 中的 $n$ 为正整数的时候,极限式子“取大头去小头”的定理,在本文中,我们将对极限式子的“取大头去小头”的定理进行扩展,助力同学们提升解题速度。

继续阅读“扩展的极限“抓大去小”定理”

峰说峰语:人生其实不需要那么多的“意义”


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress