2019年考研数二第07题解析

题目

设 $A$ 是 $4$ 阶矩阵,$A^{*}$ 为 $A$ 的伴随矩阵,若线性方程组 $AX=0$ 的基础解系中有 $2$ 个向量,则 $r(A^{*}) = ?$

$\textcolor{Orange}{[A]}$ $0$

$\textcolor{Orange}{[B]}$ $1$

$\textcolor{Orange}{[C]}$ $2$

$\textcolor{Orange}{[D]}$ $3$

继续阅读“2019年考研数二第07题解析”

2019年考研数二第06题解析

题目

设函数 $f(x), g(x)$ 的二阶导函数在 $x=a$ 处连续,则 $\lim_{x \rightarrow a}$ $\frac{f(x) – g(x)}{(x-a)^{2}}$ $=$ $0$ 是两条曲线 $y$ $=$ $f(x)$, $y$ $=$ $g(x)$ 在 $x$ $=$ $a$ 对应点处相切及曲率相等的 $?$.

$\textcolor{Orange}{[A]}$ 充分不必要条件

$\textcolor{Orange}{[B]}$ 充分必要条件

$\textcolor{Orange}{[C]}$ 必要不充分条件

$\textcolor{Orange}{[D]}$ 既不充分又不必要条件

继续阅读“2019年考研数二第06题解析”

2019年考研数二第05题解析

题目

已知平面区域 $D$ $=$ $\{ (x, y) | |x| + |y|$ $\leqslant$ $\frac{\pi}{2} \}$, 记:

$I_{1}$ $=$ $\iint_{D}$ $\sqrt{x^{2} + y^{2}}$ $dxdy$, $I_{2}$ $=$ $\iint_{D}$ $\sin$ $\sqrt{x^{2}+y^{2}}$ $dxdy$, $I_{3}$ $=$ $\iint_{D}$ $(1-\cos \sqrt{x^{2}+y^{2}})$ $dxdy$, 则()

$\textcolor{Orange}{[A]}$ $I_{3} < I_{2} < I_{1}$

$\textcolor{Orange}{[B]}$ $I_{2} < I_{1} < I_{3}$

$\textcolor{Orange}{[C]}$ $I_{1} < I_{2} < I_{3}$

$\textcolor{Orange}{[D]}$ $I_{2} < I_{3} < I_{1}$

继续阅读“2019年考研数二第05题解析”

2019年考研数二第04题解析

题目

已知微分方程 $y^{”} + ay^{‘} + by = ce^{x}$ 的通解为 $y = (C_{1}+C_{2}x)e^{-x} +e^{x}$, 则 $a, b, c$ 依次为 $?$

$\textcolor{Orange}{[A]}$ $1, 0, 1$

$\textcolor{Orange}{[B]}$ $1, 0, 2$

$\textcolor{Orange}{[C]}$ $2, 1, 3$

$\textcolor{Orange}{[D]}$ $2, 1, 4$

继续阅读“2019年考研数二第04题解析”

2008 年研究生入学考试数学一选择题第 6 题解析

一、题目

设随机变量 $X$ 服从参数为 $1$ 的泊松分布,则 $P {X=E(X^{2})}$ $=$__.

二、解析

每年考研数学一试卷中填空题的最后一题基本都是考一个概率论中的知识。本题考察的知识很明确,就是:泊松分布。

泊松分布的概念如下:

设随机变量 $X$ 的概率分布为:


$P {X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $(\lambda>0,k=0,1,2,3 \dots)$


则称 $X$ 服从参数为 $\lambda$ 的泊松分布,记为 $X$ $\backsim$ $P(\lambda)$.

此外,在泊松分布中,数学期望 $E(X)$ $=$ $\lambda$, 方差 $D(X)$ $=$ $\lambda$.

最后,我们还需要知道 $E(X)$ 与 $D(X)$ 的关系公式:

$D(X)$ $=$ $E(X^{2})$ $-$ $[E(X)]^{2}$.

由题目信息可知,该题中泊松分布的参数 $\lambda=1$, 于是我们知道:

$E(X)$ $=$ $D(X)$ $=$ $1$.

由于题目中要求的表达式中含有 “$E(X^{2})$”, 而在 $E(X)$ 与 $D(X)$ 的关系式中也含有 “$E(X^{2})$”, 于是,我们有:

$E(X^{2})$ $=$ $D(X)$ $+$ $[E(X)]^{2}$.

进而有:

$E(X^{2})$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2$.

于是,我们要求的表达式就变成了:

$P{X=E(X^{2})}$ $\Rightarrow$ $P{X=2}$.

至此,我们已经知道了泊松分布的计算公式中的两个未知量的数值,分别是:

$\lambda$ $=$ $1$, $k$ $=$ $E(X^{2})$ $=$ $2$.

于是,根据泊松分布的计算公式,我们有:

$P$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\frac{1^{2}e^{-1}}{2!}$ $=$ $\frac{e^{-1}}{2 \times 1}$ $=$ $\frac{1}{e}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2e}$.

综上可知,正确答案就是:$\frac{1}{2e}$.

EOF

1998 年研究生入学考试数学二填空题第 1 题解析(三种方法)

一、题目

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$

解法一

使用四则运算将原式化简,之后使用等价无穷小替换求出结果。

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x}-2)(\sqrt{1+x}+\sqrt{1-x}+2)}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x})^{2}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{1+x+1-x+2\sqrt{1+x}\sqrt{1-x}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$

由于当 $x$ $\rightarrow$ $0$ 时,$(\sqrt{1+x}$ $+$ $\sqrt{1-x})$ $\rightarrow$ $2$, 因此有:

$\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{2(\sqrt{1-x^{2}}-1)}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x^{2}}-1}{2x^{2}}$

根据等价无穷小的如下替换原则:

$(1+x)^{\mu }$ $-$ $1$ $\backsim$ $\mu$ $x$

详细内容可以参考荒原之梦网(zhaokaifeng.com)的这篇文章:高等数学中常用的等价无穷小

可知:

$\sqrt{1-x^{2}}$ $-$ $1$ $\backsim$ $-$ $\frac{1}{2}x^{2}$, 因此有:

$\lim_{x \to 0}$ $\frac{-\frac{1}{2}x^{2}}{2x^{2}}$ $=$ $-$ $\frac{1}{4}$

解法二

观察题目中的式子可以发现,当 $x$ $\rightarrow$ $0$ 时,满足以下条件:

(1) $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ $\rightarrow$ $0$

(2) $x^{2}$ $\rightarrow$ $0$ 且 $x^{2}$ $\neq$ $0$

(3) $y$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ 和 $y$ $=$ $x^{2}$ 在 $0$

附近两者都可导(在 $0$ 附近,导数存在且连续,故可导)。

综上可知,此处可以使用 $\frac{0}{0}$ 型的洛必达法则,即可以对分子和分母分别求导后再求极限来确定未定式的值。

求导过程如下:

原式 $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}}{2x}$ $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{\sqrt{1+x}} – \frac{1}{\sqrt{1-x}}}{4x}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x(\sqrt{1+x} \times \sqrt{1-x})}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x} – \sqrt{1+x}}{4x \sqrt{1-x^{2}}}$

因为,当 $x$ $\rightarrow$ $0$ 时,$\sqrt{1-x^{2}}$ $\rightarrow$ $1$, 所以有:

$\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x}$

上面的计算过程依次是“求导 / 化简 / 化简 / 化简 / 化简”。下面开始正式使用 $\frac{0}{0}$ 型的洛必达法则进行计算:

$\overset{\frac{0}{0}}{\rightarrow}$ $\lim_{x \to 0}$ $=$ $-$ $\frac{\frac{1}{2\sqrt{1-x}} – \frac{1}{2\sqrt{1+x}}}{4}$

经过上面的求导,我们发现,当 $x$ $\rightarrow$ $0$ 时,$-$ $\frac{1}{2\sqrt{1-x}}$ $\rightarrow$ $-$ $\frac{1}{2}$, $-$ $\frac{1}{2\sqrt{1+x}}$ $\rightarrow$ $0$, 因此有:

原式 $=$ $\frac{-\frac{1}{2} – \frac{1}{2}}{4}$ $=$ $\frac{-(\frac{1}{2}+\frac{1}{2})}{4}$ $=$ $-$ $\frac{1}{4}$

在使用洛必达法则解决该问题的时候,进行了两次求导。其实,只要满足以下三个条件,则在使用洛必达法则的过程中可以进行任意次求导,但需要注意的是,每一次求导之前必须确保式子仍然满足如下三个条件,否则不能使用洛必达法则:

设:$y$ $=$ $\frac{f(x)}{g(x)}$, 则需满足:

(01) $x$ $\rightarrow$ $x_{0}$ 或 $x$ $\rightarrow$ $\infty$ 时,$f(x)$ 和 $g(x)$ 均趋于 $0$ 或者趋于 $\infty$;

(02) $f(x)$ 和 $g(x)$ 在 $x_{0}$ 的去心邻域可导且 ${g}'(x)$ $\neq$ $0$;

(03) $\frac{{f}'(x)}{{g}'(x)}$ 的极限存在或者为无穷大。

总结来说,洛必达法则的使用方法如下:

$\lim_{x \to x_{0}}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x \to x_{0}}$ $\frac{{f}'(x)}{{g}'(x)}$

解法三

观察题目中的式子我们发现,可以使用麦克劳林展开式的 $(1+x)^{m}$ 的形式和皮亚诺余项对该题目进行计算,公式如下:

$(1+x)^{m}$ $=$ $1$ $+$ $mx$ $+$ $\frac{m(m-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$

代入公式可得:

$\sqrt{1+x}$ $=$ $(1+x)^{\frac{1}{2}}$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2}$ $)$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

$\sqrt{1-x}$ $=$ $(1-x)^{\frac{1}{2}}$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

于是有:

原式 $=$ $\lim_{x \to 0}$ $\frac{1+\frac{1}{2} x – \frac{1}{8} x^{2} + 1 – \frac{1}{2} x – \frac{1}{8} x^{2} + o(x^{2})-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{-\frac{1}{4} x^{2} + o(x^{2})}{x^{2}}$ $=$ $\lim_{x \to 0}$ $-$ $\frac{1}{4}$ $+$ $\frac{0(x^{2})}{x^{2}}$ $=$ $-$ $\frac{1}{4}$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress