2019年考研数二第11题解析

题目

设函数 $f(u)$ 可导,$z = yf(\frac{y^{2}}{x})$, 则 $2x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=?$

解析

本题主要考察求偏导和复合函数求导。

$$
\frac{\partial z}{\partial x}=
$$

$$
y[f(\frac{y^{2}}{x})]^{‘} =
$$

$$
y \cdot f^{‘}(\frac{y^{2}}{x}) \cdot (\frac{y^{2}}{x})^{‘} =
$$

$$
y \cdot f^{‘}(\frac{y^{2}}{x}) \cdot y^{2} \cdot (-1) \frac{1}{x^{2}} =
$$

$$
-\frac{y^{3}}{x^{2}}f^{‘}(\frac{y^{2}}{x}).
$$

$$
\frac{\partial z}{\partial y} =
$$

$$
y^{‘}f(\frac{y^{2}}{x}) + y[f(\frac{y^{2}}{x})]^{‘} =
$$

注意:求 $\frac{\partial z}{\partial x}$ 的时候虽然也有 $[f(\frac{y^{2}}{x})]^{‘}$ 这一步,但是前者是对 $x$ 求导,后者是对 $y$ 求导,因此这里不能直接套用前面的计算结果,求偏导的时候要时刻注意现在是对谁求导。

$$
f(\frac{y^{2}}{x}) + y \cdot f^{‘}(\frac{y^{2}}{x}) \cdot \frac{1}{x}(y^{2})^{‘} =
$$

$$
f(\frac{y^{2}}{x}) + y \cdot f^{‘}(\frac{y^{2}}{x}) \cdot \frac{2y}{x} =
$$

$$
f(\frac{y^{2}}{x}) + \frac{2y^{2}}{x}f^{‘}(\frac{y^{2}}{x}).
$$

于是:

$$
2x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=
$$

$$
2x[-\frac{y^{3}}{x^{2}}f^{‘}(\frac{y^{2}}{x})] + y[f(\frac{y^{2}}{x}) + \frac{2y^{2}}{x}f^{‘}(\frac{y^{2}}{x})] =
$$

$$
-\frac{2y^{3}}{x}f^{‘}(\frac{y^{2}}{x}) + yf(\frac{y^{2}}{x}) + \frac{2y^{3}}{x}f^{‘}(\frac{y^{2}}{x}) =
$$

$$
yf(\frac{y^{2}}{x}).
$$

综上可知,正确答案为:$yf(\frac{y^{2}}{x}).$

EOF