2019年考研数二第13题解析

题目

已知函数 $f(x) = x \int_{1}^{x} \frac{\sin t^{2}}{t} d t,$ 则 $\int_{0}^{1}f(x)dx=?$

解析

本题就是计算定积分,主要用到的公式是分部积分公式,如下:

$$\int_{a}^{b}u(x)v^{‘}(x)dx=u(x)v(x)|_{a}^{b} – \int_{a}^{b}v(x)u^{‘}(x)dx.$$

如果一个式子中能凑出来求导计算,都可以尝试用一下分部积分,分部积分常常能简化计算。

计算过程如下:

$$\int_{0}^{1}f(x)dx=$$

$$\int_{0}^{1}(x\int_{1}^{x} \frac{\sin t^{2}}{t}dt)dx=$$

$$\int_{0}^{1}(\int_{1}^{x}\frac{\sin t^{2}}{t}dt)(\frac{x^{2}}{2})^{‘}dx=$$

$$(\frac{x^{2}}{2}\int_{1}^{x}\frac{\sin t^{2}}{t}dt)|_{0}^{1} – \int_{0}^{1}\frac{x^{2}}{2} \cdot \frac{\sin x^{2}}{x}dx=$$

又:

$$(\frac{x^{2}}{2}\int_{1}^{x}\frac{\sin t^{2}}{t}dt)|_{0}^{1}= \frac{1}{2}\int_{1}^{1}\frac{\sin t^{2}}{t} – \frac{0}{2}\int_{1}^{0}\frac{\sin t^{2}}{t} = 0-0=0.$$

所以:

$$原式=-\frac{1}{2}\int_{0}^{1}x \sin x^{2}=$$

$$-\frac{1}{2} \cdot \frac{1}{2}\int_{0}^{1}\sin x^{2} d(x^{2})=$$

$$-\frac{1}{4}(-\cos x^{2})|_{0}^{1}=$$

$$\frac{1}{4}\cos x^{2}|_{0}^{1}=$$

$$\frac{\cos 1 – 1}{4}.$$

综上可知,正确答案为:$\frac{\cos 1 – 1}{4}.$

EOF