题目
$$\lim_{x \rightarrow 0} (x+2^{x})^{\frac{2}{x}}=?$$
解析
已知:
$$\lim_{x \rightarrow 0}(1+x)^{\frac{1}{x}} = \lim_{x \rightarrow \infty}(1+\frac{1}{x})^{x} = e.$$
$$a^{x} – 1 \sim x \ln a.$$
$$\log_{a}^{M} + \log_{a}^{N} = \log_{a}^{(MN)}.$$
$$\log_{a}^{M^{n}} = n \log_{a}^{M}.$$
解题过程如下:
$$原式 = $$
$$\lim_{x \rightarrow 0}[(1 + x + 2^{x} – 1)^{\frac{1}{x+2^{x}-1}}]^{\frac{2(x+2^{x}-1)}{x}} = $$
$$e^{2 \lim_{x \rightarrow 0}{\frac{x+2^{x}-1}{x}}} = $$
$$e^{2 \lim_{x \rightarrow 0}(1 + \frac{2^{x}-1}{x}) = }$$
$$e^{2(1 + \ln 2)} = $$
$$e^{2+2 \ln 2} = $$
$$e^{\ln^{e^{2}} + \ln 4} = $$
$$e^{\ln 4e^{2}} = $$
$$4e^{2}.$$
综上可知,答案为:$4e^{2}.$
EOF