$\int$ $e^{-x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int e^{-x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $-e^{-x}$ $+$ $C$

[B].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $e^{x}$ $+$ $C$

[C].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $e^{-x}$ $+$ $C$

[D].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $-e^{-x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{e^{-x}} \mathrm{d} x =$$ $$\textcolor{Red}{-e^{-x}} + \textcolor{Yellow}{C}.$$其中,$e$ 表示自然对数的底数,$C$ 为任意常数.

基本积分公式:

自然对数的底数 $e$

自然对数的指数 e | 荒原之梦
图 01. 图中的曲线表示 $y$ $=$ $\frac{1}{x}$, 浅蓝色区域则是由曲线 $y$, $X$ 轴和 $x$ $=$ $1$, $x$ $=$ $e$ 围成的,由于积分 $\int_{1}^{e}$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $1$, 因此,图中浅蓝色区域的面积刚好为 $1$.
By Cronholm144 at English Wikipedia, CC BY-SA 3.0.
继续阅读“自然对数的底数 $e$”

概率论:理解事件的互斥,对立与独立

一、性质

$A$ 与 $B$ 为互斥(互不相容)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ $\Leftrightarrow$ $A$ 与 $B$ 不能同时发生。

$A$ 与 $B$ 为对立(互逆)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ 且 $A$ $\cup$ $B$ $=$ $\Omega$ $\Leftrightarrow$ $A$ 与 $B$ 在一次试验中必然发生且只能发生一个。

若 $P(A)$ $=$ $0$ 或 $P(A)$ $=$1$, 则 $A$ 与任何事件都相互独立。

若 $A$ 与 $B$ 相互独立,则 $P(AB)$ $=$ $P(A)P(B)$.

若 $A$ 与 $B$ 互斥(或互逆)且均为非零概率事件,则 $A$ 与 $B$ 不相互独立。

若 $A$ 与 $B$ 相互独立且均为非零概率事件,则 $A$ 与 $B$ 不互斥。

二、图解

$A$ 与 $B$ 互斥(互不相容)关系如图 1 所示:

图 1

$A$ 与 $B$ 对立(互逆)关系如图 2 所示:

图 2

$A$ 与 $B$ 相互独立关系如图 3 所示:

图 3

$A$ 与 $B$ 互逆,互斥与独立之间的推导关系如图 4 所示:

图 4

EOF

充分条件必要条件和充要条件(图文解析)

一、充分条件

若由 $A$ 能够推导出 $B$, 但是由 $B$ 不能够推导出 $A$, 则称 $A$ 是 $B$ 的充分不必要条件($B$ 的充分不必要条件是 $A$.)。

从集合的角度看,就是 $A \in B$, 如图 1:

图 1
继续阅读“充分条件必要条件和充要条件(图文解析)”

理解互斥事件与对立事件(图文)

先来看一下互斥事件与对立事件的定义。

互斥事件的定义:

互斥事件(互不相容):当 $AB$ $=$ $\varnothing$ (也可以写成 $A$ $\cap$ $B$ $=$ $\varnothing$)时,称事件 $A$ 与 事件$B$ 互不相容或互斥,事件 $A$, $B$ 不能同时发生.

对立事件的定义:

对立事件(逆事件):若 $A$ $\cup$ $B$ $=$ $\Omega$ 且 $A$ $\cap$ $B$ $=$ $\varnothing$, 则称 $A$ 与 $B$ 互为逆事件,也称互为对立事件. $A$ 的对立事件记为 $\bar{A}$.

总的来说,互斥事件是一个比对立事件更广泛一些的概念,这一点从互斥事件与对立事件各自的定义上也可以看出来。互斥事件只限制了 $A$ $\cap$ $B$ $=$ $\varnothing$, 而对立事件不仅限制了 $A$ $\cap$ $B$ $=$ $\varnothing$, 还限制了 $A$ $\cup$ $B$ $=$ $\Omega$. 很显然,互斥事件的限制范围更宽松,因此能表示的范围也更大。

我们可以将互斥事件和对立事件理解成包含和被包含的关系:

对立必然互斥,互斥不一定对立。

如果要用普通语言表述互斥事件与对立事件,那就是:

对立是要么一定且只能是我,要么就一定且只能是你;

互斥是如果不是我,则可能是你,也可能另外的其他人。

为了进一步辅助理解,我画了两张图,大致表示出了对立事件和互斥事件,如下。

图 1 表示 $A$ 与 $B$ 为对立事件时其相互之间的关系:

图 1. 对立事件示意图

图 2 表示 $A$ 与 $B$ 为互斥事件时其 相互之间的关系:

图 2. 互斥事件示意图

注:本文中的 “$\Omega$” 表示当前语境下的样本空间,即当前语境下所有样本点组成的集合。


考研数学思维导图 | 荒原之梦
考研数学思维导图 | 荒原之梦

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

EOF

[高等数学]解析一道关于函数极限的概念考察题(001)

一、题目

下列命题中正确的是()

( A ) 若 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$, 则 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $\geqslant$ $g(x)$.

( B ) 若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$, 且 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A_{0}$, $\lim_{x \rightarrow x_{0}}$ $g(x)$ $=$ $B_{0}$, 则 $A_{0}$ $>$ $B_{0}$.

( C ) 若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$, 则 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$.

( D ) 若 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $>$ $\lim_{x \rightarrow x_{0}}$ $g(x)$, 则 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$.

二、解析

概念考察题是考研数学中一类比较难的题,这类题的难点在于除了紧抠概念之外,解答者没有多少可以自由发挥的空间。而且,概念考察题考察的都是概念的细微之处,一不留神就可能审错题。

从本题的四个选项可以看出,本题考查的着重点在函数极限这一部分。更细致的来看,本题考查了函数极限的定义中当 $x$ $\rightarrow$ $x_{0}$ 时的极限的定义,如下:

已知 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$

任给 $\varepsilon$ $>$ $0$, 存在正数 $\delta$, 当 $0$ $<$ $(x$ $-$ $x_{0})$ $<$ $\delta$ 时,就有 $|f(x)-A|$ $<$ $\varepsilon$.

注:上面这个定义说的通俗一点就是,当 $x$ 与 $x_{0}$ 足够接近的时候,$f(x)$ 与 $f(x)$ 的极限 $A$ 也足够接近。

本题还考察了函数极限的性质中的“保号性”,如下:

设 $\lim$ $f(x)$ $=$ $A$ $>$ $0$, 则在极限管辖的范围内,$f(x)$ $>$ $0$ $($ $f(x)$ $>$ $\frac{A}{2}$ $)$.

反之,$f(x)$ $>$ $0$ 且 $\lim$ $f(x)$ $=$ $A$ $\Rightarrow$ $A$ $\geqslant$ $0$.

注:当 $x$ $\rightarrow$ $x_{0}$ 时,“极限管辖的范围”指的就是 $x_{0}$ 的去心邻域;当 $x$ $\rightarrow$ $\infty$ 时,“极限管辖的范围”指的就是无穷远处。

对于函数极限的性质中的保号性,我们需要明确以下几点:

  • 解答保号性问题的大前提是“涉及到的函数的极限均存在”,这也是解决所有涉及极限的问题的大前提:要研究和利用极限,则极限必须存在;
  • 保号性都是局部保号性,即只有在极限管辖的范围内才存在保号性;
  • 由极限大于 $0$ 可以推出函数大于 $0$, 不能推出函数等于 $0$ 或者函数小于 $0$. 由函数大于 $0$ 可以推出极限大于 $0$ 或者极限等于 $0$, 而且在不确定极限究竟是只大于 $0$ 还是只小于 $0$ 的情况下,要写成极限大于等于 $0$ 的形式。

以下是对本题中每一个选项的分析。

A 选项

该选项给出了:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$.

这说明 $f(x)$ 和 $g(x)$ 的极限都存在(满足了研究极限问题的大前提,条件可用,可以继续接下来的思考步骤)且 $f(x)$ 的极限大于等于 $f(x)$ 的极限。

于是,我们有:

$\lim_{x \rightarrow x_{0}}$ $($ $f(x)$ $-$ $g(x)$ $)$ $\geqslant$ $0$.

接下来选项给出了:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

该选项接下来指出,由上面的条件可以推出 $f(x)$ $\geqslant$ $g(x)$.

这个结论是不对的。原因如下:

若函数 $f(x)$ 的极限 $A$ $>$ $0$, 则可以推出函数 $f(x)$ $>$ $0$;

若函数 $f(x)$ 的极限 $A$ $<$ $0$, 则可以推出函数 $f(x)$ $<$ $0$;

若函数 $f(x)$ 的极限 $A=0$, 则不能确定函数 $f(x)$ 是大于 $0$, 小于 $0$ 还是等于 $0$. 原因是,如果 $A$ $=$ $0$ 我们不知道函数 $f(x)$ 是在大于 $0$ 的方向上趋近于极限 $A$, 还是在小于 $0$ 的方向上趋近于极限 $A$, 抑或 $f(x)$ $=$ $0$.

如图 1 所示,当函数的极限等于 $0$ 时,函数可能是大于 $0$ 的:

图 1. $y$ $=$ $\frac{1}{x}$ 的局部图像.

如图 2 所示,当函数的极限等于 $0$ 时,函数也可能是小于 $0$ 的:

图 2. $y$ $=$ $\frac{-1}{x}$ 的局部图像.

第三种情况,当函数的极限等于 $0$ 时,函数可能也是等于 $0$ 的,如图 3 所示:

图 3. $y$ $=$ $0$ 的局部图像.

因此,已知极限 $\lim_{x \rightarrow x_{0}}$ $[$ $f(x)$ $-$ $g(x)$ $]$ $\geqslant$ $0$, 并不能推导出函数 $F(x)$ $=$ $[$ $f(x)$ $-$ $g(x)$ $]$ $\geqslant$ $0$.

综上可知,选项 A 是错误的。

B 选项

题目中给出了如下条件:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

因此,本题符合函数极限保号性的使用条件,条件可用,可以继续接下来的思考步骤。

接着,该选项给出:

$f(x)$ $>$ $g(x)$

于是,当我们令 $F(x)$ $=$ $f(x)$ $-$ $g(x)$ 时,可以得出如下结论:

$F(x)$ $>$ $0$

接着,该选项又给出:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A_{0}$, $\lim_{x \rightarrow x_{0}}$ $g(x)$ $=$ $B_{0}$

这说明函数 $f(x)$ 和函数 $g(x)$ 都是存在极限的,符合我们研究函数极限问题的大前提,条件可用,可以继续接下来的思考步骤。

最后,该选项给出了他的结论:

$A_{0}$ $>$ $B_{0}$

有了这个结论,结合前面的条件,我们可以把该选项改写成如下形式:

已知函数 $F(x)$ 存在极限,且函数 $F(x)$ $>$ $0$, 则 $\lim_{x \rightarrow x_{0}}$ $F(x)$ $>$ $0$.

这个结论显然是错误的,因为已知函数大于 $0$ 的时候,其极限是可能等于 $0$ 的,例如对 A 选项的解析中给出的图 1, 函数 $f(x)$ $=$ $\frac{1}{x}$ 始终是大于 $0$ 的,但是其极限却是等于 $0$ 的。

综上可知,选项 B 是错误的。

C 选项

该选项的错误比较明显,因为选项中没有指明函数 $f(x)$ 和函数 $g(x)$ 的极限存在,缺少了研究极限问题的大前提,那么,接下来的所有说明和结论都是没有根据也没有意义的。不过,如果 C 选项像 B 选项一样指明函数 $f(x)$ 和函数 $g(x)$ 的极限是存在的,那么该选项的表述就是正确的,原因在 B 选项中已经分析过。

综上可知,选项 C 是错误的。

D 选项

该选项首先给出了如下条件:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $>$ $\lim_{x \rightarrow x_{0}}$ $g(x)$

若我们令 $F(x)$ $=$ $f(x)$ $-$ $g(x)$, 则上面的条件可以改写成:

$\lim_{x \rightarrow x_{0}}$ $F(x)$ $>$ $0$

接着选项给出了:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

接着,该选项给出了它的结论:

$f(x)$ $>$ $g(x)$

根据前面的分析可知,我们可以将此改写成:

$F(x)$ $>$ $0$

我们知道,当一个函数的极限存在且大于 $0$ 的时候,在函数极限的管辖范围内,可以推导出该函数也大于 $0$.

综上可知,选项 D 是正确的。

EOF

使用定义判断函数的奇偶性

一、题目

判断函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的奇偶性。

二、解析

本题用到的知识点

$\log_{a}(MN)$ $=$ $\log_{a}M$ $+$ $\log_{a}N$

在 MATLAB (下面的代码在 MATLAB 9.1.0.441655 (R2016b) 中测试通过) 中输入如下代码:

x=0:0.01:10;
semilogy(x,log(x))

可以绘制出 $y$ $=$ $\ln(x)$ 的图像:

图 1

有图像可以看到,自然对数 $\ln(x)$ 只在 $(0,+\infty)$ 的区间里有定义,不符合对数函数或者偶数函数对于“定义域 $X$ 关于原点对称”的要求。不过题目中的函数可以看作是一个符合函数,因此,我们还需要结合 $g(x)$ $=$ $x$ $+$ $\sqrt{1+x^{2}}$ 的定义域来确定 $f(x)$ 的定义域。

因为:

$\sqrt{1+x^{2}}$ $>$ $\sqrt{x^{2}}$ $>$ $|x|$ $>$ $0$.

则:

当 $x$ $\in$ $(-\infty,+\infty)$ 时 $x$ $+$ $\sqrt{1+x^{2}}$ $>$ $0$ 满足自然对数函数 $\ln(x)$ 对定义域的要求,而且,当 $x$ $=$ $0$ 时,$f(x)$ $=$ $\ln(1)$ $=$ $0$ , 也满足奇函数“当 $f(x)$ 在原点处有定义时,$f(0)$ $=$ $0$”的要求。

到这里,定义域的问题解决了,下面要解决的是函数是关于 $y$ 轴对称,还是关于原点对称的问题。

由于:

$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$

$f(-x)$ $=$ $\ln(-x+\sqrt{1+x^{2}})$

则:

$f(x)$ $+$ $f(-x)$ $=$ $\ln(\sqrt{1+x^{2}}+x)$ $+$ $\ln(\sqrt{1+x^{2}}-x)$ $=$ $\ln[(\sqrt{1+x^{2}}+x)(\sqrt{1+x^{2}}-x)]$ $=$ $\ln(1+x^{2}-x^{2})$ $=$ $\ln(1)$ $=$ $0$

上面的运算结果符合奇函数的定义,因此,$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 是一个奇函数。

此外,使用 WolframAlpha 画出的函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的图像如下:

图 2.

由图像我们也可以看出这是一个奇函数。

EOF

错题总结:明确求导过程中的自变量很关键

一、例题:对下面的函数求导

$f(x)$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$

二、错误的求导过程

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}$ $\frac{1}{\sqrt{1+x}}$ $+$ $\frac{1}{2}$ $\frac{1}{\sqrt{1-x}}$ $=$ $\frac{1}{2 \sqrt{1+x}}$ $+$ $\frac{1}{2 \sqrt{1-x}}$

上面这个计算过程是错的,错误的原因是在计算 $\sqrt{1+x}$ 的导数时把 $1+x$ 视作了自变量,也就是说把 $1$ $+$ $x$ 视作了求导对象;而在对 $\sqrt{1-x}$ 求导时,又把 $1$ $-$ $x$ 看作了求导自变量。

很显然,一个二维函数中不可能有两个不同的自变量,而且根据约定可知,当式子中出现 $f(x)$ 或者 $lim_{x \to 0}$ 时,就表明这个式子中的自变量是 $x$ 且求导也要对 $x$ 求导。

三、正确的求导过程

这里我们可以使用复合函数求导的链式法则计算本例题,复合函数的链式求导法则如下:

设 $y$ $=$ $f(u)$, $u$ $=$ $\mu(x)$, 如果 $\mu(x)$ 在 $x$ 处可导,$f(x)$ 在对应点 $u$ 处可导,则复合函数 $y$ $=$ $f[\mu(x)]$ 在 $x$ 处可导,且有:

$\frac{dy}{dx}$ $=$ $\frac{dy}{du}$ $\frac{du}{dx}$ $=$ ${f}'[\mu(x)]{\mu}'(x)$

于是,对于例题的正确求导过程如下:

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}(1 + x)^{-\frac{1}{2}}$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}}$ $=$ $\frac{1}{2}$ $(1 + x)^{-\frac{1}{2}} \times {(x)}’$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}} \times {(-x)}’$ $=$ $\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}$