问题
[$\textcolor{Orange}{\int x^{k} \mathrm{d} x}$] 的积分该怎么计算?选项
[A]. $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k+1}}{k+1}$ $+$ $C$[B]. $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k}}{k}$
[C]. $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k}}{k}$ $+$ $C$
[D]. $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k+1}}{k+1}$
$$\int x^{\textcolor{Red}{k}} \mathrm{d} x =$$ $$\frac{x^{\textcolor{Red}{k+1}}}{\textcolor{Red}{k+1}} + \textcolor{Green}{C}.$$其中,$k$ $\textcolor{Yellow}{\neq}$ $-1$, $C$ 为任意常数.