一、前言
在矩阵的转置运算中,参与运算的矩阵必须是 $n \times n$ 阶的方阵吗?
继续阅读“转置运算中的矩阵必须是方阵吗?”真正的智慧是难寻的珍宝,这些熠熠生辉的宝贵财富,有着一些共同的特点:
专注、勤奋、谦逊,还有旺盛的热情。
已知 $\boldsymbol{A}$, $\boldsymbol{B}$ 是三阶方阵,且满足等式 $\boldsymbol{A}^{2} \boldsymbol{B}$ $-$ $\boldsymbol{A}$ $-$ $\boldsymbol{B}$ $=$ $\boldsymbol{E}$, 若 $\boldsymbol{A}$ $=$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, 则:
$$
\begin{vmatrix}
\boldsymbol{B}
\end{vmatrix} = ?
$$
难度评级:
继续阅读“对抽象矩阵/行列式的计算,要尽可能“拖延”代入具体数值的时间”首先,我们要知道,学习是有用的,并且,部分学习活动可以在学校内进行,部分学习活动需要在学校外进行。
其次,单纯讨论学历是否有用是没有意义的,因为学历只是在学校中学习的副产品,学校能给予我们的最好的馈赠,不是学历,而是学习到的知识。
所以,如果有人否定学历,本质上就是在否定学习本身——
但很显然,不学习就不能获得新知、不能产生主动的进步,因而就会落后。
所以,假设学历无用,那么,有多少人愿意落后?
方差可以用来描述随机变量的离散程度,是数理统计中一个常用的统计特征。
但是,在不同的数学学习资料中,表示方差所用的符号可能存在区别,这对我们的学习产生了一定的困扰。
因此,在本文中,「荒原之梦考研数学」就给同学们汇总整理了不同学习资料中常用的方差表示方法,以方便同学们的学习。
继续阅读“概率统计中用于表示“方差”的那些符号”人类迄今尚未观测到宇宙的边界,但我们却早已知道,这个世界存在着诸多的限制:速度是有上限的、温度是有下限的、即便借助工具,我们对世界的感官体验也是有限的——
如此种种,就是我们所生活的这个世界给我们划定的“探索边界”。这样的边界的存在,也势必会导致我们认识能力和思考能力也变得有限。
然而,世界之所以存在边界,就是因为世界本身是“无限”的,否则,一个有限的世界,为什么需要“边界”呢?
2024 年 12 月 04 日
在「荒原之梦考研数学」的另一篇文章《矩阵/行列式 的一个优化策略》中,我们首次提出了在包含多个 $0$ 元素的矩阵/行列式中 的一个优化策略,那么,如果初始的矩阵/行列式中没有 $0$ 元素,或者只有少量的 $0$ 元素该怎么办呢?
在本文中,我们将以矩阵/行列式的主对角线为基准,通过元素复杂度梯度排列的方式,给同学们提供一种适用性更广泛的矩阵/行列式化简的方法。
继续阅读“基于主对角线元素复杂度梯度的矩阵/行列式化简策略”越来越多的研究表明,以目前的大模型理论训练出来的人工智能只是一种基于概率的“预测机器”,既没有情感,也没有真正的智慧。
所以,以当前的发展来看,并没有机器产生原始创新的可能性——只有人才能进行原始创新。
能够激发人类原始创新能力的就是学习,而有学习就要有教育——
所以,在人工智能时代,我们更应该重视学习与教育,否则人类文明的发展将被困在过去的知识构筑的牢笼之中,不仅无法取得新的实质进步,更有可能开始倒退。
2024 年 10 月 27 日
已知 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$, 并且 $K \neq 0$, 则当 $n$ 充分大时,下列结论中一定正确的是哪个?
⟨A⟩» $A_{n}$ $<$ $K + \frac{1}{n}$
⟨B⟩» $A_{n}$ $>$ $K – \frac{1}{n}$
⟨C⟩» $\left| A_{n} \right|$ $>$ $\frac{|K|}{2}$
⟨D⟩» $\left| A_{n} \right|$ $<$ $\frac{|K|}{2}$
难度评级:
无 穷 小 量不可数,例如,当 $x \rightarrow \infty$ 的时候,$\frac{1}{x}$, $\frac{2}{x}$, $\frac{9999999}{x}$ 都是无穷小量,我们也可以将无穷小理解为“无限小”;
有 限 小 量可数,例如,无论是 $\frac{1}{2}$, $\frac{1}{100}$, 还是 $\frac{1}{9999999}$, 虽然在某些程度上都是很小的数字,但他们都是可数的,都是一个确定的量。
加上或者减去一个 无 穷 小 量不会对原有的数值产生影响:
$$
\textcolor{brown}{\colorbox{yellow}{ 1 }} + \textcolor{pink}{ \lim_{x \to \infty} \frac{1}{x} } = 1 + \textcolor{pink}{ 0 } \textcolor{springgreen}{ = 1 }
$$
加上或者减去一个 有 限 小 量会对原有的数值产生影响:
$$
\textcolor{brown}{\colorbox{yellow}{ 1 }} + \frac{1}{9999999} = \frac{9999999 + 1}{9999999} = \frac{10000000}{9999999} \textcolor{orangered}{\neq 1}
$$
有了上面的知识之后,求解本题就很容易了。
首先可以看到,无论是让 $K$ 加上 $\frac{1}{n}$ 还是减去 $\frac{1}{n}$, 当 $n$ 充分大时,也就是当 $n \rightarrow \infty$ 时,都有:
$$
\lim_{n \to \infty} \frac{1}{n} = 0
$$
也就是说,当 $n \rightarrow \infty$ 时:
$$
K + \frac{1}{n} = K – \frac{1}{n} = K
$$
又由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 可知:
$$
\begin{aligned}
A_{n} & \textcolor{springgreen}{=} K + \frac{1}{n} \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\
A_{n} & \textcolor{springgreen}{=} K – \frac{1}{n} \quad \textcolor{springgreen}{\boldsymbol{\checkmark}}
\end{aligned}
$$
综上可知,C 选 项 正 确 。
我们也可以用反例法求解本题:
当 $n \rightarrow \infty$ 时,若令 $A_{n}$ $=$ $K + \frac{2}{n}$, 则也满足题目 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 的条件,但此时:
$$
\begin{aligned}
& \left( A_{n} = K + \frac{2}{n} \right) > \left( K + \frac{1}{n} \right) \\ \\
\textcolor{springgreen}{\Rightarrow} \ & A_{n} > \left( K + \frac{1}{n} \right) \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\
\textcolor{orangered}{\nRightarrow} \ & \textcolor{red}{ \cancel{ \textcolor{white}{ A_{n} < \left( K + \frac{1}{n} \right) } } }
\end{aligned}
$$
类似的,当 $n \rightarrow \infty$ 时,若令 $A_{n}$ $=$ $K – \frac{2}{n}$, 则也满足题目 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 的条件,但此时:
$$
\begin{aligned}
& \left( A_{n} = K – \frac{2}{n} \right) < \left( K – \frac{1}{n} \right) \\ \\ \textcolor{springgreen}{\Rightarrow} \ & A_{n} < \left( K – \frac{1}{n} \right) \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\ \textcolor{orangered}{\nRightarrow} \ & \textcolor{red}{ \cancel{ \textcolor{white}{ A_{n} > \left( K – \frac{1}{n} \right) } } }
\end{aligned}
$$
虽然我们不知道 $K$ 是一个正数还是一个负数,但是,由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ $\neq$ $0$ 可知:
$$
\textcolor{orange}{
\lim_{n \rightarrow \infty} |A_{n}| = |K| > 0 } \tag{1}
$$
且:
$$
\frac{|K|}{2} > 0
$$
由于当 $n$ 足够大时,也就是 $n \rightarrow \infty$ 时,上面的 $\textcolor{orange}{(1)}$ 式一定成立,并且 $\frac{|K|}{2}$ 是一个可数的数值,所以下式一定成立:
$$
|K| > \frac{|K|}{2}
$$
即:
$$
\lim_{n \rightarrow \infty} |A_{n}| > \frac{|K|}{2}
$$
我们也可以用极限的定义求解本题:
由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ $\neq$ $0$ 可知:
$$
\lim_{n \rightarrow \infty} |A_{n}| = |K| > 0
$$
于是,根据极限的定义可知,若令 $\xi = \frac{|K|}{2}$, 则一定存在正整数 $N$, 使得当 $n > N$ 时,有:
$$
\begin{aligned}
& \left( \textcolor{orange}{ \Big| |A_{n}| − |K| \Big| } \right) < \left( \textcolor{orange}{ \xi = \frac{∣K∣}{2} } \right) \\ \\
\Rightarrow \ & \Big| |A_{n}| − |K| \Big| < \frac{|K|}{2} \\ \\
\Rightarrow \ & \frac{-|K|}{2} < \left( \textcolor{pink}{ |A_{n}| − |K| } \right) < \frac{|K|}{2} \\ \\
\Rightarrow \ & \frac{|K|}{2} < |A_{n}| < \frac{3 |K|}{2} \\ \\
\Rightarrow \ & \textcolor{gray}{ |A_{n}| < |K| } \\ \\
\textcolor{springgreen}{\Rightarrow} \ & \frac{|K|}{2} < |A_{n}| < |K| \quad \textcolor{springgreen}{\boldsymbol{\checkmark}}
\end{aligned}
$$
事实上,若 $k$ $\in$ $(0, 1)$, $\xi$ $\in$ $(0, |K|)$ 按照上述方法,我们可以证明当 $n$ 足够大的时候,下式一定成立:
$$
\textcolor{yellow}{
|A_{n}| > k |K|
}
$$
综上可知,C 选 项 正 确 。
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!
人生的一切行为都必须消耗一定的时间,每个人每天都只有 24 个小时的时间,同时,对这些时间的利用率也随着注意力的不同而发生着改变——
时间是宝贵的、很容易浪费的、几乎是不可再生的,所以,不要在无意义的人和事上浪费自己的时间,因为这是一件相当奢侈的事情。
2024 年 10 月 26 日
在对高阶行列式进行计算的时候,其中一种计算方式就是“升阶”,也就是将原来的 $n$ 阶行列式升为 $n+1$ 阶行列式。
那么,什么样的行列式可以尝试升阶操作?怎么进行升阶操作?升阶之后该怎么进行接下来的计算呢?
在本文中,「荒原之梦考研数学」将就以上问题为同学们详细讲解。
继续阅读“投石问路:线性代数中的升阶法详解”产生的就会腐朽,出现的就会消失,永恒的意义也许是不存在的。
但是,永恒仍然具有价值,追求永恒本身就是对永恒的塑造。
2024 年 10 月 25 日
大部分时候,在对矩阵或者行列式进行运算的时候,我们都倾向于通过初等变换使得矩阵/行列式中产生更多的 $0$ 元素,或者说倾向于将矩阵/行列式中的非 $0$ 元素消为 $0$ 元素(在本文中,我们将这一类操作简称为“消 $0$”)。
那么,在消 $0$ 的时候,有什么注意事项呢?该采取什么样的策略,才能尽可能又快又多地消出来更多的 $0$ 元素呢?
在本文中,「荒原之梦考研数学」将为同学们详细讲解。
继续阅读“矩阵/行列式消 $0$ 的一个优化策略”我们见识了越多的阴暗和无趣,就越容易陷入对整个世界的否定。但是,在这世界上,现在或曾经,有着许多伟大的灵魂,他们或是在自己的领域深刻耕耘,或是为了家国大义而舍生忘死,这些伟大的灵魂,可以让我们藐视生活中的哪些斤斤两两的鸡毛蒜皮,建立起宏大的自信。
2024 年 10 月 24 日
每日箴言 :每天一句话,为梦想加油!
专属福利 :全部加入 考研数学思维导图 VIP 的同学都将在年底免费获赠《荒原之梦 2025 年度每日箴言合集》电子版一份。
⁜ 图片信息 ⁜
描述:2024 年 11 月 07 日,在佛罗里达州美国宇航局肯尼迪航天中心的尼尔·A·阿姆斯特朗运营和检查大楼内,一台大型起重机将美国宇航局的猎户座宇宙飞船从最终组装和系统测试室中吊起,并将其移至高度舱以完成进一步的测试。
NASA ID: KSC-20241107-PH-KLS01_0049
Date Created: 2024-11-07
Photographer: NASA/Kim Shiflett
已知 $a$, $b$, $c$, $\cdots$, $z$ 这 $26$ 个字母为变量,请化简下面这个式子:
$$
\begin{aligned}
I \\
& = (a – x)(b-x)(c-x) \cdots (z-x)
\end{aligned}
$$