问题
已知,$\boldsymbol{E}$ 为单位矩阵, 则 以 下 关 于 初 等 矩 阵 的 说 法 中 ,正确的是哪个?选项
[A]. $\boldsymbol{E}$ 经过两次初等变换得到的矩阵称为初等矩阵[B]. $\boldsymbol{E}$ 经过一次初等变换得到的矩阵称为初等矩阵
[C]. $\boldsymbol{E}$ 经过任意次初等变换得到的矩阵称为初等矩阵
[D]. $\boldsymbol{E}$ 经过一次初等行变换和一次初等列变换得到的矩阵称为初等矩阵
设 $y$ $=$ $y(x)$ 是二阶常系数线性微分方程 $\textcolor{orange}{y^{\prime \prime}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{2 m y^{\prime}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{n^{2} y}$ $\textcolor{orange}{=}$ $\textcolor{orange}{0}$ 满足 $\textcolor{orange}{y(0)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{a}$ 与 $\textcolor{orange}{y^{\prime}(0)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{b}$ 的特解,其中 $m$ 和 $n$ 为常数,且 $\textcolor{orange}{m}$ $\textcolor{orange}{>}$ $\textcolor{orange}{n}$ $\textcolor{orange}{>}$ $\textcolor{orange}{0}$, 则 $\textcolor{orange}{\int_{0}^{+ \infty}}$ $\textcolor{orange}{y(x)}$ $\textcolor{orange}{\mathrm{d} x}$ $\textcolor{orange}{=}$ $\textcolor{orange}{?}$
继续阅读“计算微分方程 $y^{\prime \prime}$ $+$ $2 m y^{\prime}$ $+$ $n^{2} y$ $=$ $0$ 满足一定条件特解的无穷限反常积分”$\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}} & \boldsymbol{O} \\ \boldsymbol{\textcolor{yellow}{C}} & \boldsymbol{\textcolor{cyan}{B}} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \\ \textcolor{red}{-}\boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \boldsymbol{\textcolor{yellow}{C}} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \end{array}\right)$
$\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}} & \boldsymbol{\textcolor{yellow}{C}} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}}^{-1} & \textcolor{red}{-}\boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} \boldsymbol{\textcolor{yellow}{C}} \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{-1} \end{array}\right)$
$\left(\begin{array}{ll} \boldsymbol{O} & \boldsymbol{\textcolor{orange}{A}} \\ \boldsymbol{\textcolor{cyan}{B}} & \boldsymbol{O} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{cc} \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \\ \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \end{array}\right)$
$\left(\begin{array}{ll}\boldsymbol{\textcolor{orange}{A}} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}\end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll}\boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}}\end{array}\right)$