问题
已知,$\boldsymbol{\textcolor{orange}{A}}$, $\boldsymbol{\textcolor{orange}{B}}$ 和 $\boldsymbol{\textcolor{orange}{C}}$ 是元素 非 全 为 零 的方阵,$\boldsymbol{\textcolor{orange}{O}}$ 是元素 全 为 零 的方阵则,根据可逆矩阵的性质,$\textcolor{orange}{\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right)^{-1}}$ $\textcolor{orange}{=}$ $\textcolor{orange}{?}$
选项
[A]. $\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right)^{-1}$ $=$ $\left(\begin{array}{ll} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{A}^{-1} \boldsymbol{C} \boldsymbol{B}^{-1} & \boldsymbol{B}^{-1} \end{array}\right)$[B]. $\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right)^{-1}$ $=$ $\left(\begin{array}{ll} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{B}^{-1} \boldsymbol{C} \boldsymbol{A}^{-1} & \boldsymbol{B}^{-1} \end{array}\right)$
[C]. $\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right)^{-1}$ $=$ $\left(\begin{array}{ll} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{B} \boldsymbol{C}^{-1} \boldsymbol{A} & \boldsymbol{B}^{-1} \end{array}\right)$
[D]. $\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right)^{-1}$ $=$ $\left(\begin{array}{ll} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{B}^{-1} \boldsymbol{C} \boldsymbol{A}^{-1} & \boldsymbol{B}^{-1} \end{array}\right)$
$\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}} & \boldsymbol{O} \\ \boldsymbol{\textcolor{yellow}{C}} & \boldsymbol{\textcolor{cyan}{B}} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \\ \textcolor{red}{-}\boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \boldsymbol{\textcolor{yellow}{C}} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \end{array}\right)$