2019年考研数二第08题解析

题目

设 $A$ 是 $3$ 阶实对称矩阵,$E$ 是 $3$ 阶单位矩阵,若 $A^{2} + A = 2E$, 且 $|A|=4$, 则二次型 $A^{T}AX$ 的规范型为 $?$

$\textcolor{Orange}{[A]}$ $y_{1}^{2}$ $+$ $y_{2}^{2}$ $+$ $y_{3}^{2}$

$\textcolor{Orange}{[B]}$ $y_{1}^{2}$ $+$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

$\textcolor{Orange}{[C]}$ $y_{1}^{2}$ $-$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

$\textcolor{Orange}{[D]}$ $-$ $y_{1}^{2}$ $-$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

继续阅读“2019年考研数二第08题解析”

2019年考研数二第07题解析

题目

设 $A$ 是 $4$ 阶矩阵,$A^{*}$ 为 $A$ 的伴随矩阵,若线性方程组 $AX=0$ 的基础解系中有 $2$ 个向量,则 $r(A^{*}) = ?$

$\textcolor{Orange}{[A]}$ $0$

$\textcolor{Orange}{[B]}$ $1$

$\textcolor{Orange}{[C]}$ $2$

$\textcolor{Orange}{[D]}$ $3$

继续阅读“2019年考研数二第07题解析”

2019年考研数二第06题解析

题目

设函数 $f(x), g(x)$ 的二阶导函数在 $x=a$ 处连续,则 $\lim_{x \rightarrow a}$ $\frac{f(x) – g(x)}{(x-a)^{2}}$ $=$ $0$ 是两条曲线 $y$ $=$ $f(x)$, $y$ $=$ $g(x)$ 在 $x$ $=$ $a$ 对应点处相切及曲率相等的 $?$.

$\textcolor{Orange}{[A]}$ 充分不必要条件

$\textcolor{Orange}{[B]}$ 充分必要条件

$\textcolor{Orange}{[C]}$ 必要不充分条件

$\textcolor{Orange}{[D]}$ 既不充分又不必要条件

继续阅读“2019年考研数二第06题解析”

2019年考研数二第05题解析

题目

已知平面区域 $D$ $=$ $\{ (x, y) | |x| + |y|$ $\leqslant$ $\frac{\pi}{2} \}$, 记:

$I_{1}$ $=$ $\iint_{D}$ $\sqrt{x^{2} + y^{2}}$ $dxdy$, $I_{2}$ $=$ $\iint_{D}$ $\sin$ $\sqrt{x^{2}+y^{2}}$ $dxdy$, $I_{3}$ $=$ $\iint_{D}$ $(1-\cos \sqrt{x^{2}+y^{2}})$ $dxdy$, 则()

$\textcolor{Orange}{[A]}$ $I_{3} < I_{2} < I_{1}$

$\textcolor{Orange}{[B]}$ $I_{2} < I_{1} < I_{3}$

$\textcolor{Orange}{[C]}$ $I_{1} < I_{2} < I_{3}$

$\textcolor{Orange}{[D]}$ $I_{2} < I_{3} < I_{1}$

继续阅读“2019年考研数二第05题解析”

2019年考研数二第04题解析

题目

已知微分方程 $y^{”} + ay^{‘} + by = ce^{x}$ 的通解为 $y = (C_{1}+C_{2}x)e^{-x} +e^{x}$, 则 $a, b, c$ 依次为 $?$

$\textcolor{Orange}{[A]}$ $1, 0, 1$

$\textcolor{Orange}{[B]}$ $1, 0, 2$

$\textcolor{Orange}{[C]}$ $2, 1, 3$

$\textcolor{Orange}{[D]}$ $2, 1, 4$

继续阅读“2019年考研数二第04题解析”

2008 年研究生入学考试数学一选择题第 6 题解析

一、题目

设随机变量 $X$ 服从参数为 $1$ 的泊松分布,则 $P {X=E(X^{2})}$ $=$__.

二、解析

每年考研数学一试卷中填空题的最后一题基本都是考一个概率论中的知识。本题考察的知识很明确,就是:泊松分布。

泊松分布的概念如下:

设随机变量 $X$ 的概率分布为:


$P {X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $(\lambda>0,k=0,1,2,3 \dots)$


则称 $X$ 服从参数为 $\lambda$ 的泊松分布,记为 $X$ $\backsim$ $P(\lambda)$.

此外,在泊松分布中,数学期望 $E(X)$ $=$ $\lambda$, 方差 $D(X)$ $=$ $\lambda$.

最后,我们还需要知道 $E(X)$ 与 $D(X)$ 的关系公式:

$D(X)$ $=$ $E(X^{2})$ $-$ $[E(X)]^{2}$.

由题目信息可知,该题中泊松分布的参数 $\lambda=1$, 于是我们知道:

$E(X)$ $=$ $D(X)$ $=$ $1$.

由于题目中要求的表达式中含有 “$E(X^{2})$”, 而在 $E(X)$ 与 $D(X)$ 的关系式中也含有 “$E(X^{2})$”, 于是,我们有:

$E(X^{2})$ $=$ $D(X)$ $+$ $[E(X)]^{2}$.

进而有:

$E(X^{2})$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2$.

于是,我们要求的表达式就变成了:

$P{X=E(X^{2})}$ $\Rightarrow$ $P{X=2}$.

至此,我们已经知道了泊松分布的计算公式中的两个未知量的数值,分别是:

$\lambda$ $=$ $1$, $k$ $=$ $E(X^{2})$ $=$ $2$.

于是,根据泊松分布的计算公式,我们有:

$P$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\frac{1^{2}e^{-1}}{2!}$ $=$ $\frac{e^{-1}}{2 \times 1}$ $=$ $\frac{1}{e}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2e}$.

综上可知,正确答案就是:$\frac{1}{2e}$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress