一、前言
在之前的《不定积分典型例题汇总》中,荒原之梦网已经给大家做了涵盖大部分考点的题目的解析。在这篇习题汇总中,我们将通过一些额外的题目,对不定积分中的常考知识点作进一步的巩固。
每页一道题,点击下方页码可以切换。
继续阅读“考研数学不定积分补充例题”在之前的《不定积分典型例题汇总》中,荒原之梦网已经给大家做了涵盖大部分考点的题目的解析。在这篇习题汇总中,我们将通过一些额外的题目,对不定积分中的常考知识点作进一步的巩固。
每页一道题,点击下方页码可以切换。
继续阅读“考研数学不定积分补充例题”$$
\textcolor{orangered}{
\cos (\arcsin x) = ?
}
$$
$$
\textcolor{springgreen}{
\sin (\arccos x)= ?
}
$$
举杯邀明月,天涯共此时。值此万家欢聚的日子,无论荒原之梦网的小伙伴们是仍然奋斗在学习或生活的第一线,还是正穿梭在奔赴回家的旅途上,亦或者已经准备与家人一起共度良宵——荒原之梦网都祝福大家:中秋快乐,万事如意!愿我们在今天、明天和无数个未来的日子里都心澄如明月,行稳如山峦!
你是否被下面两个式子的困惑过:
$$
\sin (\arctan x) = ?
$$
$$
\cos (\arctan x) = ?
$$
在荒原之梦网之前的文章中,曾就这类问题做过详细的推理演算(详情请点击这里),现在,只需要看懂一张图,马上就明白了!
继续阅读“sin(arctan x) 和 cos(arctan x) 怎么算?一张图让你秒懂!”已知 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 是三维线性无关列向量,请问:
$\left|\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{3}+\boldsymbol{\alpha}_{1}\right| \neq 0$ 一定成立吗?
难度评级:
继续阅读“你会拆分这种行列式吗?”已知:
$$
|A|=\left|\begin{array}{cccc}1 & -5 & 1 & 3 \\ 1 & 1 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 2 & 0 & 1 & 5\end{array}\right|
$$
则:
$$
A_{41}+A_{42}+A_{43}+A_{44}=?
$$
难度评级:
继续阅读“求代数余子式之和通常可以转化为求某行列式的值”已知,$f(x)=\frac{1}{\arctan \frac{x-1}{x}}$ 则 $x = 0$ 和 $x = 1$ 是该函数的什么间断点?
难度评级:
继续阅读“第一类间断点没有无穷也不震荡,除此之外的都是第二类间断点”已知,$f(x)=\int_{0}^{x} t \mathrm{e}^{\sin t} \mathrm{~d} t$, 则当 $x \rightarrow 0$ 时, $f(x)$ 为无穷小 $x$ 的几阶无穷小?
难度评级:
继续阅读“求一次导会降一阶,但千万别忘了求导前的阶数”$$
I = \lim \limits_{n \rightarrow \infty}\left(\frac{1}{n^{2}+n+1}+\frac{2}{n^{2}+n+2}+\cdots+\frac{n}{n^{2}+n+n}\right)=?
$$
难度评级:
继续阅读“等差数列和等比数列的前 n 项和公式你还记得吗?”已知,$I=\lim \limits_{x \rightarrow 0} \frac{a x^{2}+b x+1-\mathrm{e}^{x^{2}-2 x}}{x^{2}}=2$, 则 $a = ?$, $b=?$
难度评级:
继续阅读“求导一定要彻底,特别是对于两个式子相乘的情况”$$
I = \lim \limits_{x \rightarrow+\infty} \frac{\left(1+\frac{1}{x}\right)^{x^{2}}}{\mathrm{e}^{x}}=?
$$
难度评级:
继续阅读“不能对幂指函数的局部使用无穷小相关定理”$$
I = \lim \limits_{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{(1-\cos x) \sin ^{2} x} = ?
$$
难度评级:
继续阅读“三角函数中的和差化积与积化和差公式也很重要”