一、前言 
等价无穷小公式是考研数学中一个非常常用的工具。
但是,这些等价无穷小公式都是怎么来的呢?
如果说 $\lim_{x \rightarrow 0} \frac{\alpha(x)}{\beta(x)} = 1$ 就意味着 $\lim_{x \rightarrow 0} \alpha(x)$ 和 $\lim_{x \rightarrow 0} \beta(x)$ 是等价无穷小,但是,为什么式子 $\frac{\lim_{x \rightarrow 0} \alpha(x)}{\lim_{x \rightarrow 0} \beta(x)}$ 就等于 $1$ 呢?
在本文中,「荒原之梦考研数学」将借助“一点处的斜率”这一概念,为同学讲清楚等价无穷小公式的来龙去脉。当然,同学们也可以借助本文中使用的方法,来推导和记忆等价无穷小公式。
继续阅读“等价无穷小的本质:$x = 0$ 处斜率相等”