一、前言 
凑微分是进行积分运算的一个常用方法,但是,对于一些复杂的式子,我们可能难以一眼就看出应该怎么“凑”,这时候该怎么办呢?
二、正文 
对于一些简单的凑微分,我们可以直接“凑”,例如:
$$
\int x^{2} \textcolor{lightgreen}{\mathrm{e}^{-x}} \mathrm{~d} x = \int x^{2} \mathrm{~d} (- \textcolor{lightgreen}{\mathrm{e}^{-x}})
$$
但是,对于一些复杂的凑微分,我们有时候很难一次就“凑”成功,这个时候就需要一步一步来,也就是 先 尝 试 凑 出 原 式 的 其 中 一 部 分 ,再 逐 步 扩 展 到 更 大 的 部 分(在本文中的例子中,分别用“青绿色 $\textcolor{lightgreen}{\bullet}$” $\leadsto$ “橙色 $\textcolor{orange}{\bullet}$” $\leadsto$ “橙红色 $\textcolor{orangered}{\bullet}$” 表示了这种分步递进的凑微分过程)。
下面是一些分步凑微分的例子:
1
$$
\begin{align*}
\int \frac{1}{(\textcolor{lightgreen}{3x+1})^{2}} \mathrm{~d} x & && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \frac{1}{3} \int \frac{1}{(3x+1)^{2}} \mathrm{~d} (\textcolor{lightgreen}{3x+1}) && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \frac{1}{3} \int \textcolor{orange}{ \frac{1}{(3x+1)^{2}} } \mathrm{~d} (3x+1) && \textcolor{orange}{\bullet} \\ \\
= \ & \int \frac{-1}{3} \mathrm{~d} \left( \textcolor{orange}{ \frac{1}{3x+1} } \right) && \textcolor{orange}{\bullet} \\ \\
= \ & \int \mathrm{~d} \left(\frac{-1}{3} \frac{1}{3x+1}\right)
\end{align*}
$$
2
$$
\begin{align*}
\int \textcolor{lightgreen}{x} \mathrm{e}^{- x^{2}} \mathrm{~d} x & && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \int \mathrm{e}^{-x^{2}} \mathrm{~d} \left(\frac{1}{2} \textcolor{lightgreen}{x^{2}} \right) && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \frac{1}{2} \int \mathrm{e}^{ \textcolor{orange}{-x^{2}}} \mathrm{~d} \left( x^{2} \right) && \textcolor{orange}{\bullet} \\ \\
= \ & \frac{-1}{2} \int \mathrm{e}^{ -x^{2} } \mathrm{~d} \left( \textcolor{orange}{ -x^{2} } \right) && \textcolor{orange}{\bullet} \\ \\
= \ & \frac{-1}{2} \int \textcolor{orangered}{ \mathrm{e}^{-x^{2} } } \mathrm{~d} \left( -x^{2} \right) && \textcolor{orangered}{\bullet} \\ \\
= \ & \frac{-1}{2} \int \mathrm{~d} \left( \textcolor{orangered}{ \mathrm{e}^{-x^{2}} } \right) && \textcolor{orangered}{\bullet} \\ \\
= \ & \int \mathrm{~d} \left(- \frac{1}{2} \mathrm{e}^{-x^{2}}\right)
\end{align*}
$$
3
$$
\begin{align*}
\int \frac{\textcolor{lightgreen}{x}}{\sqrt{1-x^{2}}} \mathrm{~d} x & && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \int \frac{ \mathrm{d} \left(\textcolor{lightgreen}{\frac{1}{2} x^{2}}\right)}{\sqrt{1-x^{2}}} && \textcolor{lightgreen}{\bullet} \\ \\
= \ & \frac{1}{2} \int \frac{ \mathrm{d} \left( x^{2}\right)}{\sqrt{\textcolor{orange}{1-x^{2}}}} && \textcolor{orange}{\bullet} \\ \\
= \ & \frac{-1}{2} \int \frac{ \mathrm{d} (\textcolor{orange}{1-x^{2}})}{\sqrt{1-x^{2}}} && \textcolor{orange}{\bullet} \\ \\
= \ & \frac{-1}{2} \int \textcolor{orangered}{ \frac{ 1 }{\sqrt{1-x^{2}}} } \mathrm{~d} (1-x^{2}) && \textcolor{orangered}{\bullet} \\ \\
= \ & \int \mathrm{~d} \left[- \textcolor{orangered}{ \sqrt{(1-x^{2}) }}\right] && \textcolor{orangered}{\bullet}
\end{align*}
$$