一、前言 
凑微分的目的就是将积分 $\int \Phi(x) \mathrm{~d} x$ 改写成 $\int f(\phi(x)) \mathrm{~d} \phi(x)$ 的形式,即:
$$
\int \textcolor{orange}{\Phi(x)} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\phi(x)}) \mathrm{~d} \textcolor{lightgreen}{\phi(x)}
$$
经过上述变换,就可以将积分变量从 $x$ 拓展成更复杂的 $\phi(x)$, 从而可以在大多数时候达到简化被积函数的作用。
在本文中,「荒原之梦考研数学」就给同学们汇总了考研数学(高等数学)解题过程中常用的凑微分公式。
二、正文 
常用的凑微分公式如下:
$$
\begin{align}
& \int f(\textcolor{lightgreen}{ax + b}) \mathrm{~d} x = \int \frac{1}{a} f(\textcolor{lightgreen}{ax + b}) \mathrm{~d} (\textcolor{lightgreen}{ax + b}) \quad (a \neq 0) \\ \notag \\
& \int f(\textcolor{lightgreen}{x^{\alpha}}) x^{\alpha – 1} \mathrm{~d} x = \frac{1}{\alpha} \int f(\textcolor{lightgreen}{x^{\alpha}}) \mathrm{~d} (\textcolor{lightgreen}{x^{\alpha}}) \quad (\alpha \neq 0) \\ \notag \\
& \int f(\textcolor{lightgreen}{\ln x}) \frac{1}{x} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\ln x}) \mathrm{~d} (\textcolor{lightgreen}{\ln x}) \\ \notag \\
& \int f(\textcolor{lightgreen}{\sin x}) \cos x \mathrm{~d} x = \int f(\textcolor{lightgreen}{\sin x}) \mathrm{~d} (\textcolor{lightgreen}{\sin x}) \\ \notag \\
& \int f(\textcolor{lightgreen}{\cos x}) \sin x \mathrm{~d} x = -\int f(\textcolor{lightgreen}{\cos x}) \mathrm{~d} (\textcolor{lightgreen}{\cos x}) \\ \notag \\
& \int f(\textcolor{lightgreen}{\tan x}) \frac{1}{\cos^{2} x} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\tan x}) \mathrm{~d} (\textcolor{lightgreen}{\tan x}) \\ \notag \\
& \int f(\textcolor{lightgreen}{\arctan x}) \frac{1}{1 + x^{2}} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\arctan x}) \mathrm{~d} (\textcolor{lightgreen}{\arctan x}) \\ \notag \\
& \int f(\textcolor{lightgreen}{\arcsin x}) \frac{1}{\sqrt{1 – x^{2}}} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\arcsin x}) \mathrm{~d} (\textcolor{lightgreen}{\arcsin x})
\end{align}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。