问题
下面关于函数的[连续]与[可积]之间关系的描述,正确的是哪个?选项
[A]. 开区间上连续必可积[B]. 闭区间上连续一定不可积
[C]. 闭区间上连续不一定可积
[D]. 闭区间上连续必可积
$$\int \textcolor{Red}{\sqrt{x^{2} – a^{2}}} \mathrm{d} \textcolor{Yellow}{x}$$ $$\textcolor{Green}{\xrightarrow[]{x = a \times \sec t}}$$ $$\int \textcolor{Red}{\sqrt{(a \sec t)^{2} – a^{2}}} \mathrm{d} \textcolor{Yellow}{(a \sec t)} =$$ $$\int \textcolor{Red}{\sqrt{(a^{2} \sec ^{2} t – a^{2})} \cdot a \sec t \tan t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{\sqrt{a^{2} (\sec ^{2} t – 1)} \cdot a \sec t \tan t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a \sqrt{\sec ^{2} t – 1} \cdot a \sec t \tan t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a \sqrt{\tan ^{2} t} \cdot a \sec t \tan t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a \tan t \cdot a \sec t \tan t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a ^{2} \tan ^{2} t \cdot \sec t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\textcolor{Orange}{a ^{2}} \int \textcolor{Red}{\tan ^{2} t \cdot \sec t} \mathrm{d} \textcolor{Yellow}{t}.$$
$$\int \textcolor{Red}{\sqrt{a^{2} + x^{2}}} \mathrm{d} \textcolor{Yellow}{x}$$ $$\textcolor{Green}{\xrightarrow[]{x = a \times \tan t}}$$ $$\int \textcolor{Red}{\sqrt{a^{2} + (a \tan t)^{2}}} \mathrm{d} \textcolor{Yellow}{(a \tan t)}$$ $$\int \textcolor{Red}{\sqrt{a^{2}(1 + \tan ^{2} t)}} \cdot a \sec ^{2} t \mathrm{d} \textcolor{Yellow}{t}$$ $$\int \textcolor{Red}{a \sqrt{(1 + \tan ^{2} t)}} \cdot a \sec ^{2} t \mathrm{d} \textcolor{Yellow}{t}$$ $$\int \textcolor{Red}{a \sqrt{\sec ^{2} t}} \cdot a \sec ^{2} t \mathrm{d} \textcolor{Yellow}{t}$$ $$\int \textcolor{Red}{a \sec t} \cdot a \sec ^{2} t \mathrm{d} \textcolor{Yellow}{t}$$ $$\int \textcolor{Red}{a^{2} \sec ^{3} t} \mathrm{d} \textcolor{Yellow}{t}$$ $$\textcolor{Orange}{a^{2}} \int \textcolor{Red}{\sec ^{3} t} \mathrm{d} \textcolor{Yellow}{t}.$$
$$\int \textcolor{Red}{\sqrt{a^{2} – x^{2}}} \mathrm{d} \textcolor{Yellow}{x}$$ $$\textcolor{Green}{\xrightarrow[]{x = a \times \sin t}}$$ $$\int \textcolor{Red}{\sqrt{a^{2} – (a \sin t)^{2}}} \mathrm{d} \textcolor{Yellow}{(a \sin t)} =$$ $$\int \textcolor{Red}{\sqrt{a^{2}(1 – \sin ^{2} t)} \cdot a \cos t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a \sqrt{\cos ^{2} t} \cdot a \cos t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\int \textcolor{Red}{a^{2} \cdot \cos ^{2} t} \mathrm{d} \textcolor{Yellow}{t} =$$ $$\textcolor{Orange}{a^{2}} \int \textcolor{Red}{\cos ^{2} t} \mathrm{d} \textcolor{Yellow}{t}.$$其中,$a$ 为常数,且 $a^{2}$ $-$ $x^{2}$ $\neq$ $0$.
$$\int \textcolor{Red}{f[\phi (x)] \phi ^{\prime} (x)} \mathrm{d} \textcolor{Yellow}{x} =$$ $$\int f[\phi(x)] \mathrm{d} [\phi(x)]$$ $$\textcolor{Orange}{\xrightarrow[]{u = \phi(x)}}$$ $$\int \textcolor{Red}{f(u)} \mathrm{d} \textcolor{Yellow}{u} =$$ $$\textcolor{Red}{F(u)} + \textcolor{Green}{C} =$$ $$\textcolor{Red}{F[\phi(x)]} + \textcolor{Green}{C}.$$
其中,$u$ 和 $v$ 分别表示函数 $u(x)$ 和 $v(x)$.