广义的定积分中值定理(B007)

问题

设函数 $f(x)$ 在区间 $[a, b]$ 上连续,函数 $g(x)$ 在区间 $[a, b]$ 上可积且恒正或恒负,则一定存在 $\textcolor{Orange}{\xi}$ $\textcolor{Orange}{\in}$ $\textcolor{Orange}{[a, b]}$, 使得关于定积分 $\textcolor{Orange}{\int_{a}^{b}}$ $\textcolor{Orange}{f(x)}$ $\textcolor{Orange}{g(x)}$ $\textcolor{Orange}{\mathrm{d} x}$ 的结论中,正确的是哪个?

选项

[A].   $\int_{a}^{b}$ $f(x)$ $g(x)$ $\mathrm{d} x$ $=$ $g(\xi)$ $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$

[B].   $\int_{a}^{b}$ $f(x)$ $g(x)$ $\mathrm{d} x$ $=$ $g(\xi)$ $\int_{a}^{b}$ $g(x)$ $\mathrm{d} x$

[C].   $\int_{a}^{b}$ $f(x)$ $g(x)$ $\mathrm{d} x$ $=$ $\xi$ $\int_{a}^{b}$ $g(x)$ $\mathrm{d} x$

[D].   $\int_{a}^{b}$ $f(x)$ $g(x)$ $\mathrm{d} x$ $=$ $f(\xi)$ $\int_{a}^{b}$ $g(x)$ $\mathrm{d} x$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int_{a}^{b} \textcolor{Green}{\Bigg [} \textcolor{Red}{f(x)} \textcolor{Green}{\times} \textcolor{Yellow}{g(x)} \textcolor{Green}{\Bigg ]} \mathrm{d} x =$$ $$\textcolor{Red}{f(\xi)} \textcolor{Green}{\times} \int_{a}^{b} \textcolor{Yellow}{g(x)} \mathrm{d} x.$$ 其中,$g(x)$ $\geqslant$ $0$ 或者 $g(x)$ $\leqslant$ $0$.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress