问题
根据矩阵乘法的运算规律,能否由 $\boldsymbol{A B}$ $=$ $\boldsymbol{O}$, 推出 $\boldsymbol{A}$ $=$ $\boldsymbol{O}$ 或 $\boldsymbol{B}$ $=$ $\boldsymbol{O}$ $?$选项
[A]. 不能[B]. 能
$\textcolor{cyan}{\lambda}$ $\textcolor{orange}{(}$ $\boldsymbol{A B}$ $\textcolor{orange}{)}$ $=$ $\textcolor{orange}{(}$ $\textcolor{cyan}{\lambda}$ $\boldsymbol{A}$ $\textcolor{orange}{)}$ $\boldsymbol{B}$ $=$ $\boldsymbol{A}$ $\textcolor{orange}{(}$ $\textcolor{cyan}{\lambda}$ $\boldsymbol{B}$ $\textcolor{orange}{)}$
则,$\boldsymbol{A} \boldsymbol{B}$ $=$ $?$
$\boldsymbol{A} \boldsymbol{B}$ $=$ $\begin{bmatrix} 3 & 2\\ 1 & 0 \end{bmatrix}$
$3$ $=$ $1$ $\textcolor{orange}{\times}$ $3$ $\textcolor{cyan}{+}$ $(-1)$ $\textcolor{orange}{\times}$ $0$ $\textcolor{cyan}{+}$ $0$ $\textcolor{orange}{\times}$ $1$
$2$ $=$ $1$ $\textcolor{orange}{\times}$ $1$ $\textcolor{cyan}{+}$ $(-1)$ $\textcolor{orange}{\times}$ $(-1)$ $\textcolor{cyan}{+}$ $0$ $\textcolor{orange}{\times}$ $2$
$1$ $=$ $0$ $\textcolor{orange}{\times}$ $3$ $\textcolor{cyan}{+}$ $2$ $\textcolor{orange}{\times}$ $0$ $\textcolor{cyan}{+}$ $1$ $\textcolor{orange}{\times}$ $1$
$0$ $=$ $0$ $\textcolor{orange}{\times}$ $1$ $\textcolor{cyan}{+}$ $(-1)$ $\textcolor{orange}{\times}$ $2$ $\textcolor{cyan}{+}$ $1$ $\textcolor{orange}{\times}$ $2$
则,$\boldsymbol{A} \boldsymbol{B}$ 运算所得的矩阵 $\boldsymbol{C}$ 是一个几行几列的矩阵?
则,$\lambda \boldsymbol{A}$ $=$ $?$
$\textcolor{orange}{\lambda} \boldsymbol{A}$ $=$ $\left(\textcolor{orange}{\lambda} a_{i j}\right)_{m \times n}$ $=$ $\left(\begin{array}{ccc} \textcolor{orange}{\lambda} a_{11} & \cdots & \textcolor{orange}{\lambda} a_{1 n} \\ \vdots & & \vdots \\ \textcolor{orange}{\lambda} a_{m 1} & \cdots & \textcolor{orange}{\lambda} a_{m n} \end{array}\right)$