$\int$ $\csc x$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \csc x \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\csc x$ $\mathrm{d} x$ $=$ $\ln (\csc x – \cot x)$ $+$ $C$

[B].   $\int$ $\csc x$ $\mathrm{d} x$ $=$ $\ln |\csc x – \cot x|$

[C].   $\int$ $\csc x$ $\mathrm{d} x$ $=$ $\ln |\csc x – \cot x|$ $+$ $C$

[D].   $\int$ $\csc x$ $\mathrm{d} x$ $=$ $\ln (\csc x + \cot x)$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{\csc x} \mathrm{d} x =$$ $$\textcolor{Red}{\ln |\csc x – \cot x|} + \textcolor{Yellow}{C}.$$

基本积分公式:

$\int$ $\frac{1}{\sin x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \frac{1}{\sin x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\frac{1}{\sin x}$ $\mathrm{d} x$ $=$ $\ln (\csc x – \cot x)$ $+$ $C$

[B].   $\int$ $\frac{1}{\sin x}$ $\mathrm{d} x$ $=$ $\ln |\csc x – \cot x|$

[C].   $\int$ $\frac{1}{\sin x}$ $\mathrm{d} x$ $=$ $\ln |\csc x – \cot x|$ $+$ $C$

[D].   $\int$ $\frac{1}{\sin x}$ $\mathrm{d} x$ $=$ $\ln (\csc x + \cot x)$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{\frac{1}{\sin x}} \mathrm{d} x =$$ $$\textcolor{Red}{\ln |\csc x – \cot x|} + \textcolor{Yellow}{C}.$$

基本积分公式:

$\int$ $\sin (n \pi x)$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \sin (n \pi x) \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\sin (n \pi x)$ $\mathrm{d} x$ $=$ $\frac{1}{n \pi}$ $\cos (n \pi x)$ $+$ $C$

[B].   $\int$ $\sin (n \pi x)$ $\mathrm{d} x$ $=$ $\frac{-1}{n \pi}$ $\cos (n \pi x)$

[C].   $\int$ $\sin (n \pi x)$ $\mathrm{d} x$ $=$ $\frac{-1}{n \pi}$ $\cos (n \pi x)$ $+$ $C$

[D].   $\int$ $\sin (n \pi x)$ $\mathrm{d} x$ $=$ $- n \pi$ $\cos (n \pi x)$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{\sin (n \pi x)} \mathrm{d} x =$$ $$\textcolor{Red}{\frac{-1}{n \pi} \cos (n \pi x)} + \textcolor{Yellow}{C}.$$

基本积分公式:

$\int$ $\sin x$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \sin x \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\sin x$ $\mathrm{d} x$ $=$ $- \sin x$ $+$ $C$

[B].   $\int$ $\sin x$ $\mathrm{d} x$ $=$ $\cos x$ $+$ $C$

[C].   $\int$ $\sin x$ $\mathrm{d} x$ $=$ $- \cos x$

[D].   $\int$ $\sin x$ $\mathrm{d} x$ $=$ $- \cos x$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{\sin x} \mathrm{d} x =$$ $$\textcolor{Red}{- \cos x} + \textcolor{Yelllow}{C}$$

基本积分公式:

$\int$ $\cos x$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \cos x \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\cos x$ $\mathrm{d} x$ $=$ $- \cos x$ $+$ $C$

[B].   $\int$ $\cos x$ $\mathrm{d} x$ $=$ $- \sin x$ $+$ $C$

[C].   $\int$ $\cos x$ $\mathrm{d} x$ $=$ $\sin x$

[D].   $\int$ $\cos x$ $\mathrm{d} x$ $=$ $\sin x$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{\cos x} \mathrm{d} x =$$ $$\textcolor{Red}{\sin x} + \textcolor{Yellow}{C}$$

基本积分公式:

$\int$ $e^{-x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int e^{-x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $-e^{-x}$ $+$ $C$

[B].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $e^{x}$ $+$ $C$

[C].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $e^{-x}$ $+$ $C$

[D].   $\int$ $e^{-x}$ $\mathrm{d} x$ $=$ $-e^{-x}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{e^{-x}} \mathrm{d} x =$$ $$\textcolor{Red}{-e^{-x}} + \textcolor{Yellow}{C}.$$其中,$e$ 表示自然对数的底数,$C$ 为任意常数.

基本积分公式:

自然对数的底数 $e$

自然对数的指数 e | 荒原之梦
图 01. 图中的曲线表示 $y$ $=$ $\frac{1}{x}$, 浅蓝色区域则是由曲线 $y$, $X$ 轴和 $x$ $=$ $1$, $x$ $=$ $e$ 围成的,由于积分 $\int_{1}^{e}$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $1$, 因此,图中浅蓝色区域的面积刚好为 $1$.
By Cronholm144 at English Wikipedia, CC BY-SA 3.0.
继续阅读“自然对数的底数 $e$”

$\int$ $e^{x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int e^{x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $e^{x}$ $\mathrm{d} x$ $=$ $-e^{-x}$ $+$ $C$

[B].   $\int$ $e^{x}$ $\mathrm{d} x$ $=$ $e^{-x}$ $+$ $C$

[C].   $\int$ $e^{x}$ $\mathrm{d} x$ $=$ $e^{x}$

[D].   $\int$ $e^{x}$ $\mathrm{d} x$ $=$ $e^{x}$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{e^{x}} \mathrm{d} x =$$ $$\textcolor{Red}{e^{x}} + \textcolor{Yellow}{C}.$$其中,$e$ 为自然对数的底数,其值约为 $2.71828$, $C$ 表示任意常数.

基本积分公式:

$\int$ $a^{-x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int a^{-x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $a^{-x}$ $\mathrm{d} x$ $=$ $\frac{a^{-x}}{\ln a}$ $+$ $C$

[B].   $\int$ $a^{-x}$ $\mathrm{d} x$ $=$ $\frac{a^{x}}{\ln a}$ $+$ $C$

[C].   $\int$ $a^{-x}$ $\mathrm{d} x$ $=$ $\frac{a^{-x}}{\ln a}$

[D].   $\int$ $a^{-x}$ $\mathrm{d} x$ $=$ $\frac{-a^{-x}}{\ln a}$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{a^{-x}} \mathrm{d} x =$$ $$\textcolor{Green}{\frac{1}{\ln a}} (\textcolor{Red}{-a^{-x}}) + \textcolor{Yellow}{C}.$$其中,$a$ 为常数且 $a$ $>$ $0$, $C$ 为任意常数.

相关公式:$a^{x}$ 的求导公式(B003)

基本积分公式:

$\int$ $a^{x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int a^{x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $a^{x}$ $\mathrm{d} x$ $=$ $\frac{a}{\ln x}$ $+$ $C$

[B].   $\int$ $a^{x}$ $\mathrm{d} x$ $=$ $\frac{x}{\ln a}$ $+$ $C$

[C].   $\int$ $a^{x}$ $\mathrm{d} x$ $=$ $\frac{a^{x}}{\ln a}$

[D].   $\int$ $a^{x}$ $\mathrm{d} x$ $=$ $\frac{a^{x}}{\ln a}$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Green}{a^{x}} \mathrm{d} x =$$ $$\textcolor{Red}{\frac{1}{\ln a}} \textcolor{Green}{a^{x}} \mathrm{d} x + \textcolor{Yellow}{C}.$$其中,$a$ 为常数且 $a$ $>$ $0$, $C$ 为任意常数.

相关公式:$a^{x}$ 的求导公式(B003)

基本积分公式:

$\int$ $\frac{1}{x}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int \frac{1}{x} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $\ln x$

[B].   $\int$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $\ln |x|$

[C].   $\int$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $\ln x$ $+$ $C$

[D].   $\int$ $\frac{1}{x}$ $\mathrm{d} x$ $=$ $\ln |x|$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \frac{1}{\textcolor{Red}{x}} \mathrm{d} x =$$ $$\ln \textcolor{Red}{|x|} + \textcolor{Green}{C}.$$ 其中,$\textcolor{Green}{C}$ 为任意常数.

注意:只有当 $x$ $>$ $0$ 的时候,才会有:$\int$ $\frac{1}{\textcolor{Red}{x}}$ $\mathrm{d} x$ $=$ $\ln \textcolor{Red}{x}$ $+$ $C$.


輔助圖像

积分公式 | 荒原之梦
图 01. 图中为 $y$ $=$ $\ln x$ 的图像,其定义域为 $(0, +\infty]$.

基本积分公式:

$\int$ $x^{k}$ $\mathrm{d} x$ 的积分公式(B006)

问题

[$\textcolor{Orange}{\int x^{k} \mathrm{d} x}$] 的积分该怎么计算?

选项

[A].   $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k}}{k}$

[B].   $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k}}{k}$ $+$ $C$

[C].   $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k+1}}{k+1}$

[D].   $\int$ $x^{k}$ $\mathrm{d} x$ $=$ $\frac{x^{k+1}}{k+1}$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int x^{\textcolor{Red}{k}} \mathrm{d} x =$$ $$\frac{x^{\textcolor{Red}{k+1}}}{\textcolor{Red}{k+1}} + \textcolor{Green}{C}.$$其中,$k$ $\textcolor{Yellow}{\neq}$ $-1$, $C$ 为任意常数.

基本积分公式:

局部微分与积分的相互抵消关系(B006)

问题

微分与积分互为逆运算,下列关于【局部微分】和【积分】相互作用的【关系】中,正确的是哪个?

选项

[A].   $\int$ $\mathrm{d}$ $F(x)$ $=$ $F(x)$ $\mathrm{d} x$ $+$ $C$

[B].   $\int$ $\mathrm{d}$ $F(x)$ $=$ $F(x)$

[C].   $\int$ $\mathrm{d}$ $F(x)$ $\mathrm{d} x$ $=$ $F(x)$ $+$ $C$

[D].   $\int$ $\mathrm{d}$ $F(x)$ $=$ $F(x)$ $+$ $C$

[E].   $\int$ $\mathrm{d}$ $F^{\prime}(x)$ $=$ $F(x)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\textcolor{Red}{\int \mathrm{d}} F(x) =$$ $$F(x) + \textcolor{Green}{C}.$$


规律:将积分符号 $\textcolor{Red}{\int}$ 和微分符号 $\textcolor{Red}{\mathrm{d}}$ 放在一块就可以相互抵消.

注意:由于微分符号 $\textcolor{Red}{\mathrm{d}}$ 在积分符号 $\textcolor{Red}{\int}$ 的内侧,即“微分”抵消的仅仅是位于其后面的被积函数 $F(x)$ 而不是整个积分,因此,所得的结果中会包含未被抵消掉的,来自积分的常数 $\textcolor{Green}{C}$:
$\int$ $\mathrm{d}$ $F(x)$ $=$ $F(x)$ $+$ $\textcolor{Green}{C}$

整体微分与积分的相互抵消关系(B006)

问题

微分与积分互为逆运算,下列关于【整体微分】和【积分】相互作用的【关系】中,正确的是哪个?

选项

[A].   $\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $=$ $f^{\prime}(x)$ $\mathrm{d} x$

[B].   $\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $=$ $f(x)$ $\mathrm{d} x$

[C].   $\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $=$ $f(x)$ $\mathrm{d} x$ $+$ $C$

[D].   $\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $=$ $f^{\prime}(x)$

[E].   $\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $=$ $f(x)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\textcolor{Red}{ \mathrm{d} \int } f(x) \mathrm{d} x =$$ $$f(x) \mathrm{d} x$$


规律:将微分符号 $\textcolor{Red}{ \mathrm{d} }$ 和积分符号 $\textcolor{Red}{ \int }$ 放在一块就可以相互抵消.

注意:由于微分符号 $\textcolor{Red}{ \mathrm{d} }$ 在积分符号 $\textcolor{Red}{ \int }$ 的外侧,即 “微分”抵消的是整个“积分”,因此,在所得的结果中不会包含由“积分”产生的常数 $\textcolor{Green}{C}$:
$\mathrm{d}$ $\int$ $f(x)$ $\mathrm{d} x$ $\textcolor{Yellow}{\neq}$ $f(x)$ $\mathrm{d} x$ $+$ $\textcolor{Green}{C}$

局部求导与积分的相互抵消关系(B006)

问题

求导与积分具有紧密的联系,下列关于【局部求导】和【积分】相互作用的【关系】中,正确的是哪个?

选项

[A].   $\int$ $F^{\prime}(x)$ $\mathrm{d} x$ $=$ $F(x)$

[B].   $\int$ $F^{\prime}(x)$ $\mathrm{d} x$ $=$ $F(x)$ $+$ $C$

[C].   $\int$ $F^{\prime}(x)$ $\mathrm{d} x$ $=$ $F(x)$ $\times$ $C$

[D].   $\int$ $F^{\prime}(x)$ $\mathrm{d} x$ $=$ $F^{\prime}(x)$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\textcolor{Red}{\int} F^{\textcolor{Red}{\prime}}(x) \mathrm{d} x =$$ $$\textcolor{Red}{F(x)} + \textcolor{Green}{C}.$$其中,$C$ 为任意常数.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress