问题
[$\textcolor{Orange}{\int \frac{1}{1 – x^{2}} \mathrm{d} x}$] 的积分该怎么计算?选项
[A]. $\int$ $\frac{1}{1 – x^{2}}$ $\mathrm{d} x$ $=$ $\frac{1}{2}$ $\ln \Big| \frac{1+x}{1-x} \Big|$[B]. $\int$ $\frac{1}{1 – x^{2}}$ $\mathrm{d} x$ $=$ $\frac{1}{2}$ $\ln \Big| \frac{1+x}{1-x} \Big|$ $+$ $C$
[C]. $\int$ $\frac{1}{1 – x^{2}}$ $\mathrm{d} x$ $=$ $\frac{1}{2}$ $\ln \Big| \frac{1-x}{1+x} \Big|$ $+$ $C$
[D]. $\int$ $\frac{1}{1 – x^{2}}$ $\mathrm{d} x$ $=$ $\frac{1}{2}$ $\ln \Big| \frac{1+x}{1+x} \Big|$ $+$ $C$