你能看出这个矩阵里面有一个不等于零的二阶子式吗?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & a & 2 \\ a & 4 & a\end{array}\right]$, 则 $a=-2$ 是 $r(\boldsymbol{A})=2$ 的充分必要条件吗?

难度评级:

继续阅读“你能看出这个矩阵里面有一个不等于零的二阶子式吗?”

又一道判断矩阵秩的题目,不过这次伴随矩阵来了,情况变得有点复杂……

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}$, $\boldsymbol{B}$, $\boldsymbol{A^{*}}$ 均为三阶非零矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{O}$, 则 $r(\boldsymbol{B})=?$

难度评级:

继续阅读“又一道判断矩阵秩的题目,不过这次伴随矩阵来了,情况变得有点复杂……”

两个矩阵相乘等于零矩阵的时候,这两个矩阵的秩有什么关系?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}, \boldsymbol{B}$ 都是四阶非零矩阵,且 $\boldsymbol{A B}=\boldsymbol{O}$, 那么:

若 $r(\boldsymbol{A})=1$, 则 $r(\boldsymbol{B})=?$;

若 $r(\boldsymbol{A})=2$, 则 $r(\boldsymbol{B})=?$;

若 $r(\boldsymbol{A})=3$, 则 $r(\boldsymbol{B})=?$;

若 $r(\boldsymbol{A})=4$, 则 $r(\boldsymbol{B})=?$.

难度评级:

继续阅读“两个矩阵相乘等于零矩阵的时候,这两个矩阵的秩有什么关系?”

这道题是在考“秩”吗?不!考的是矩阵的子式

一、题目题目 - 荒原之梦

已知 $a$ 是任意常数, 下列矩阵中秩有可能不等于 3 的是哪一个矩阵?

(A) $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a-1\end{array}\right]$

(B) $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & a & a+1\end{array}\right]$

(C) $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & a+1\end{array}\right]$

(D) $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 0 & a+1 \\ 0 & 0 & 0 & 2 a+2\end{array}\right]$

难度评级:

继续阅读“这道题是在考“秩”吗?不!考的是矩阵的子式”

你会进行矩阵的“逆初等变换”吗?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}$ 是三阶矩阵,将 $\boldsymbol{A}$ 的 $1$, $2$ 两行互换得到矩阵 $\boldsymbol{B}$, 再将 $\boldsymbol{B}$ 第三列的 $-2$ 倍加到第一列得到单位矩阵, 则 $\boldsymbol{A}=?$

难度评级:

继续阅读“你会进行矩阵的“逆初等变换”吗?”

这个 plus 版“左行右列”类问题你还会做吗?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]$, $\boldsymbol{B}=\left[\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31}+2 a_{11} & a_{32}+2 a_{12} & a_{33}+2 a_{13}
\end{array}\right]$, $\boldsymbol{P}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]$, $\boldsymbol{P}_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]$, $\boldsymbol{P}_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]$, 则 如何使用 $\boldsymbol{A}$, $\boldsymbol{P_{1}}$, $\boldsymbol{P_{2}}$ 或 $\boldsymbol{P_{3}}$ 表示 $\boldsymbol{B}$ $?$

难度评级:

继续阅读“这个 plus 版“左行右列”类问题你还会做吗?”

“左行右列”原则怎么用?看这道题就行了

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, $\boldsymbol{P}_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$, $\boldsymbol{P}_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$, 则 $\boldsymbol{P}_{2} \boldsymbol{A} \boldsymbol{P}_{1}=?$

难度评级:

继续阅读““左行右列”原则怎么用?看这道题就行了”

识别什么是初等矩阵

一、题目题目 - 荒原之梦

以下哪个是初等矩阵:

$$
\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]
$$

$$
\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]
$$

$$
\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right]
$$

$$
\left[\begin{array}{ccc}1 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]
$$

难度评级:

继续阅读“识别什么是初等矩阵”

通过一道题记住什么是行最简矩阵

一、题目题目 - 荒原之梦

下面哪个矩阵是行最简矩阵:

$$
\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]
$$

$$
\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]
$$

$$
\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]
$$

$$
\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]
$$

继续阅读“通过一道题记住什么是行最简矩阵”

考研线性代数:行列式部分初级专项练习题(2024 年)

一、前言 前言 - 荒原之梦

科目:《线性代数》

章节:行列式

题目总量:13

更新时间:
2023年6月28日
2023年6月27日

继续阅读“考研线性代数:行列式部分初级专项练习题(2024 年)”

为什么当矩阵各行元素之和都等于同一个数时,这个数就是一定是特征值之一?

一、前言 前言 - 荒原之梦

你知道为什么当矩阵各行元素之和等于一个数 $a$ 时,$a$ 就是一定是该矩阵的特征值之一吗?

继续阅读“为什么当矩阵各行元素之和都等于同一个数时,这个数就是一定是特征值之一?”