问题
已知,【二阶】导函数 $y”$ 的【正负】能够反映原函数 $y$ 的【凹凸性】,则以下说法正确的是哪一项?选项
[A]. $\begin{cases} & y” > 0 \Rightarrow y \ 凸; \\ & y” < 0 \Rightarrow y \ 凹; \end{cases}$[B]. $\begin{cases} & y” > 0 \Rightarrow y \ 凹; \\ & y” < 0 \Rightarrow y \ 凸; \end{cases}$
[C]. $\begin{cases} & y” > 0 \Rightarrow y \ 不凹不凸; \\ & y” < 0 \Rightarrow y \ 凸; \end{cases}$
[D]. $\begin{cases} & y” > 0 \Rightarrow y \ 凹; \\ & y” < 0 \Rightarrow y \ 不凹不凸; \end{cases}$
注意:
利用二阶导函数判断曲线凹凸性的前提是:函数在对应的闭区间内连续,在对应的开区间内二阶可导——例如,函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 内具有二阶导函数,此时,我们就可以利用函数 $f(x)$ 的二阶导函数 $f”(x)$ 判断其在区间 $[a, b]$ 上的凹凸性了。